模态框(Modal)标题

在这里添加一些文本

模态框(Modal)标题

  • Home
  • Editorial Board
  • Guide to Authors
    • Call for Papers
    • Submission Guidelines
    • Formatting Guide
    • Print on Demand
  • Policy
    • OA Policy
    • AI Policy
    • Publication Ethics Statement
    • Preprint Policy
    • Data Sharing Policy
    • Author Signature Regulations
  • Archive
  • LIS
  • About
    • About Us
    • Development History
    • Contact us
  • 中文

Figure/Table detail

"Problem-method" Joint Extraction Model in Scientific Literature Based on Syntax and Semantic Association
Kan Liu, Ye Li, Kaiwen Shi
Knowledge Management Forum, 2024, 9(4): 353-366.   DOI: 10.13266/j.issn.2095-5472.2024.026

Model BP-BLEU BLEU
-1
BLEU
-2
BLEU
-3
ROUGE
-1
ROUGE
-2
ROUGE
-L
BART 22.65 59.35 31.34 22.21 62.40 35.90 58.80
GPT 16.19 55.74 24.06 14.74 53.44 20.63 49.54
T5 9.85 48.09 14.82 8.76 44.92 11.88 10.79
NCGAT 29.84 65.24 39.84 29.15 63.71 37.65 60.20
Table 5 Baseline model comparison experiment (unit:%)
Other figure/table from this article
  • Figure 1 Scientific literature “problem-method” identification model (NCGAT) flow
  • Table 1 Example table of SAO triplet extraction
  • Table 1 Example table of SAO triplet extraction
  • Table 2 SAO association graph construction algorithm
  • Table 3 Examples table of research methods and questions in the “Y based on X” style title
  • Figure 3 Example of comparison between the title and abstract of a paper
  • Figure 4 Distribution of Chinese scientific literature dataset
  • Table 4 Experimental parameter table
  • Table 6 Ablation experiment (unit:%)
  • Table 7 Comprehensive evaluation results (unit:%)

京ICP备11021825号-2
Copyright © Knowledge Management Forum, All Rights Reserved.
Tel: 010-82623933 
E-mail: kmf@mail.las.ac.cn
Powered by Beijing Magtech Co. Ltd
Total visitors:   Visitors of today:   Now online: