Public Opinion Dynamics and Public Cognition Evolution of Generative Artificial Intelligence Technology——A Study on Weibo Public Opinion Based on ChatGPT

Yin Zhiling, Shi Xiaoxue, Huang Xiao, Lu Xinyuan

Knowledge Management Forum ›› 2025, Vol. 10 ›› Issue (4) : 335-347.

PDF(2212 KB)
PDF(2212 KB)
Knowledge Management Forum ›› 2025, Vol. 10 ›› Issue (4) : 335-347. DOI: 10.13266/j.issn.2095-5472.2025.022  CSTR: 32306.14.CN11-6036.2025.022

Public Opinion Dynamics and Public Cognition Evolution of Generative Artificial Intelligence Technology——A Study on Weibo Public Opinion Based on ChatGPT

Author information +
History +

Abstract

[Purpose/Significance] Focusing on the public opinion dynamics of generative artificial intelligence, especially ChatGPT, we aim to explore the background and significance of this technology and its social impact, analyze the public acceptance and public opinion evolution process, and provide theoretical support for the application of related technologies and social governance. [Method/Process] 221 564 microblog data related to generative AI between January 2023 and September 2024 were analyzed. By using the BERTopic model to extract the core themes and combining with keyword co-occurrence network analysis, we tracked the discussion hotspots and the evolution of public opinion in different time periods. [Result/Conclusion] This study identified eight major themes, including technology industry, education and robotics, and health care, and revealed the evolutionary path of public discussion: the initial phase focused on technological innovation and potential, the mid-term explored scenario applications such as education, health care, and finance, and the later stage turned to data privacy, security, and social ethics. Keyword analysis shows that terms such as "artificial intelligence" and "technology" run through the entire cycle, while high-frequency words such as "privacy" and "security" in the later period reflect the public's concern about the potential risks of technology. This study provides an in-depth understanding of the social effects of generative artificial intelligence technology and theoretical support for technology optimization and policy governance.

Key words

generative artificial intelligence / ChatGPT / public opinion analysis / BERTopic / topic analysis

Cite this article

Download Citations
Yin Zhiling , Shi Xiaoxue , Huang Xiao , et al. Public Opinion Dynamics and Public Cognition Evolution of Generative Artificial Intelligence Technology——A Study on Weibo Public Opinion Based on ChatGPT[J]. Knowledge Management Forum. 2025, 10(4): 335-347 https://doi.org/10.13266/j.issn.2095-5472.2025.022

References

[1]
BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Advances in neural information processing systems, 2020, 33: 1877-1901.
[2]
MEYER J G, URBANOWICZ R J, MARTIN P C N, et al. ChatGPT and large language models in academia: opportunities and challenges[J]. BioData mining, 2023, 16(1): 20.
[3]
王静静, 叶鹰.生成式AI及其GPT类技术应用对信息管理与传播的变革探析[J]. 中国图书馆学报, 2023, 49(6): 41-50.
WANG J J, YE Y. A probe into the generative AI and GPT-type technical applications with transform for information management and communication[J]. Journal of library science in China, 2023, 49(6): 41-50.
[4]
STAHL B C, EKE D. The ethics of ChatGPT-Exploring the ethical issues of an emerging technology[J]. International journal of information management, 2024, 74: 102700.
[5]
吴江, 黄茜, 贺超城, 等.基于引爆点理论的人工智能生成内容微博网络舆情传播与演化分析[J]. 现代情报, 2023, 43(7): 145-161.
WU J, HUANG Q, HE C C, et al. Propagation and evolution of public opinion in the outbreak of AIGC based on the theory of tipping point[J]. Journal of modern information, 2023, 43(7): 145-161.
[6]
吴树芳, 郑依静, 朱杰.基于改进HK模型的社交用户观点演化预测研究[J]. 现代情报, 2024, 44(2): 142-151.
WU S F, ZHENG Y J, ZHU J. Research on evolution prediction of social users opinion based on the improved HK model[J]. Journal of modern information, 2024, 44(2): 142-151.
[7]
张连峰, 周红磊, 王丹, 等. 基于超网络理论的微博舆情关键节点挖掘[J]. 情报学报, 2019, 38(12): 1286-1296.
ZHANG L F, ZHOU H L, WANG D, et al. Key node mining of Weibo public opinion based on super network theory[J]. Journal of the China Society for Scientific and Technical Information, 2019, 38(12): 1286-1296.
[8]
王旭娜, 张立凡. 基于超网络的重大突发事件公众认知演化与预警策略研究[J]. 情报理论与实践, 2024, 47(12): 183-194.
WANG X N, ZHANG L F. Research on the evolution of public cognition and early warning strategy of major emergencies based on hypernetwork[J]. Information studies: theory& application, 2024, 47(12): 183-194.
[9]
张鑫蕊, 张海涛, 栾宇, 等. 突发公共卫生事件的疫苗政策公众认知演化研究[J]. 情报科学, 2023, 41(8): 175-183.
ZHANF X R, ZHANG H T, LUAN Y, et al. A study on the mechanism of inter-organizational knowledge overlap on knowledge creation based on social network perspective[J]. Information science, 2023, 41(8): 175-183.
[10]
吴孝灵, 刘小峰, 周晶. 基于公众认知与政府引导的邻避舆情演化模型[J]. 系统工程理论与实践, 2019, 39(11): 2865-2879.
WU X L, LIU X F, ZHOUJ. Evolution model of NIMBY opinion based on public perception and governmental guidance[J]. Systems engineering-theory & practice, 2019, 39(11): 2865-2879.
[11]
杨欣谊, 王伟, 朱恒民. 基于时序共词网络的社交平台话题检测与演化研究[J]. 情报学报, 2023, 42(5): 585-597.
YANG X Y, WANG W, ZHU H M. Topic detection and evolution in social media platforms based on a temporal co-word network[J]. Journal of the China Society for Scientific and Technical Information, 2023, 42(5): 585-597.
[12]
马晓悦, 薛鹏珍, 陈忆金, 等.社交媒体危机主题演化模型构建与趋势分析[J]. 图书情报工作, 2021, 65(13): 77-86.
MA X Y, XUE P Z, CHEN Y J, et al. Construction and trend analysis of crisis theme evolution model in social media[J]. Library and information service, 2021, 65(13): 77-86.
[13]
安璐, 杜廷尧, 李纲, 等. 突发公共卫生事件利益相关者在社交媒体中的关注点及演化模式[J]. 情报学报, 2018, 37(4): 394-405.
AN L, DU T Y, LI G, et al. Concerns and evolutionary patterns of stakeholders on social media platforms during public health emergencies[J]. Journal of the China Society for Scientific and Technical Information, 2018, 37(4): 394-405.
[14]
徐元, 毛进, 李纲. 面向突发事件应急管理的社交媒体多模态信息分析研究[J]. 情报学报, 2021, 40(11): 1150-1163.
XU Y, MAO J, LI G. Social media multimodal analysis for emergency management[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(11): 1150-1163.
[15]
郭宇, 张传洋, 张海涛, 等. 危机管理视角下突发事件舆情主题演化与治理分析[J]. 图书情报工作, 2022, 66(8): 113-121.
GUO Y, ZHANG C Y, ZHANG H T, et al. Analysis on the topic evolution and governance of public opinion in emergencies from the perspective of crisis management[J]. Library and information service, 2022, 66(8): 113-121.
[16]
RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pre-training[J]. OpenAI blog, 2018, 1(8): 1-15.
[17]
HUTSON M. Could AI help you to write your next paper?[J]. Nature, 2022, 611(7934): 192-193.
[18]
陆伟, 马永强, 刘家伟, 等.数智赋能的科研创新——基于数智技术的创新辅助框架探析[J]. 情报学报, 2023, 42(9): 1009-1017.
LU W, MA YQ, LIU JW, et al. Data intelligence empowered innovation: an exploration of the innovation assistance framework based on data intelligence technology[J]. Journal of the China Society for Scientific and Technical Information, 2023, 42(9): 1009-1017.
[19]
URBAN M, DĚCHTĚRENKO F, LUKAVSKÝ J, et al. ChatGPT improves creative problem-solving performance in university students: an experimental study[J]. Computers & education, 2024, 215: 105031.
[20]
SMALES L A. Classification of RBA monetary policy announcements using ChatGPT[J]. Finance research letters, 2023, 58: 104514.
[21]
WONG F, DE LA FUENTE-NUNEZ C, COLLINS J J. Leveraging artificial intelligence in the fight against infectious diseases[J]. Science, 2023, 381(6654): 164-170.
[22]
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017, 30: 2017.
[23]
ZHANG T, LADHAK F, DURMUS E, et al. Benchmarking large language models for news summarization[J]. Transactions of the Association for Computational Linguistics, 2024, 12: 39-57.
[24]
KASNECI E, SEßLER K, KÜCHEMANN S, et al. ChatGPT for good? on opportunities and challenges of large language models for education[J]. Learning and individual differences, 2023, 103: 102274.
[25]
LIU J, WANG C, LIU S. Utility of ChatGPT in clinical practice[J]. Journal of medical internet research, 2023, 25: e48568.
[26]
林鑫, 刘泽妃.ChatGPT生成综述的质量评测与应用策略[J]. 图书情报工作, 2024, 68(18): 32-40.
LIN X, LIU Z F. Quality evaluation and application strategies for ChatGPT-Generated reviews[J]. Library and information service, 2024, 68(18): 32-40
[27]
王俊, 谢青伶, 刘畅.日常生活情境下用户与生成式人工智能交互行为分析[J]. 图书情报知识, 2025, 42(2): 60-69, 93.
WANG J, XIE QL, LIU C. User’s Interaction behavior with generative artificial intelligence indaily life contexts[J]. Documentation, information & knowledge, 2025, 42(2): 60-69, 93.

殷芝玲:数据收集与数据分析,撰写与修改论文;

石晓雪:数据收集,撰写论文;

黄晓:确定研究思路,修改论文与定稿;

卢新元:提供研究思路,修改论文。

Funding

National Social Science Fund of China titled “Research on AIGC Service Models and Ecological Governance in the Digital-Intelligence Era”(23AGL040)
PDF(2212 KB)

Accesses

Citation

Detail

Sections
Recommended

/