The Impact of Crowdsourced Fact-checking on User Information Engagement Behavior: The Moderating of Source Credibility

Jinjie Li, Kailun Nie, Lianren Wu, Jiayin Qi

Knowledge Management Forum ›› 2024, Vol. 9 ›› Issue (4) : 367-379.

PDF(1631 KB)
PDF(1631 KB)
Knowledge Management Forum ›› 2024, Vol. 9 ›› Issue (4) : 367-379. DOI: 10.13266/j.issn.2095-5472.2024.027

The Impact of Crowdsourced Fact-checking on User Information Engagement Behavior: The Moderating of Source Credibility

Author information +
History +

Abstract

[Purpose/Significance] Crowdsourced fact checking has been proposed by various social media platforms as a measure for misinformation governance. Exploring the relationship between crowdsourced fact-checking and users' information engagement behavior is conducive to improving platforms and optimizing governance measures. [Method/Process] This study used the intergroup experimental design: 2(descriptive social norms: existence Vs. non-existence) × 2(source credibility: high Vs. low), 2(positive check: existence Vs. non-existence) × 2 (source credibility: high Vs. low), 2(negative check: existence Vs. non-existence) × 2 (source credibility: high Vs. low) to explore the influence mechanism of user information engagement behavior in terms of descriptive social norms, positive and negative check, and source credibility. [Results/Conclusions] The empirical results show that descriptive social norms (DSNs) positively influence user information engagement behavior, and descriptive social norms (DSNs) and user information engagement behavior have an inverted U-shaped relationship. Source credibility positively moderates the relationship between descriptive social norms (DSNs) and user information engagement behavior. Source credibility has a positive moderating effect on the relationship between positive checks and user information engagement behavior; the higher the source credibility, the greater the impact of positive checks on user information engagement behavior. Source credibility has a negative moderating effect on the relationship between negative checks and user information engagement behavior; the higher the source credibility, the smaller the impact of negative checks on user information engagement behavior.

Key words

crowdsourcing fact-checking / social norms / source credibility / information engagement behavior

Cite this article

Download Citations
Jinjie Li , Kailun Nie , Lianren Wu , et al. The Impact of Crowdsourced Fact-checking on User Information Engagement Behavior: The Moderating of Source Credibility[J]. Knowledge Management Forum. 2024, 9(4): 367-379 https://doi.org/10.13266/j.issn.2095-5472.2024.027

References

[1]
PRÖLLOCHS N. Community-based fact-checking on Twitter’s Birdwatch platform[C]//Proceedings of the International AAAI Conference on Web and Social Media. Palo Alto: AAAI Press, 2022: 794-805.
[2]
ALLEN J, ARECHAR A A, PENNYCOOK G, et al. Scaling up fact-checking using the wisdom of crowds[J]. Science advances, 2021, 7(36): eabf4393.
[3]
SAEED M, TRAUB N, NICOLAS M, et al. Crowdsourced fact-checking at Twitter: how does the crowd compare with experts?[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. Atlanta: ACM, 2022: 1736-1746.
[4]
刘于思,闫文捷,周睿鸣. 让事实核查更受欢迎?采用群众举报和亲民话语纠正阴谋论的多重后果 [J]. 全球传媒学刊, 2023, 10 (3): 170-190.(LIU Y S, YAN W J, ZHOU R M. Make fact-Checking more popular? the paradoxical consequences of conspiracy theory correction using mass reporting and populist discourse[J]. Global journal of media studies, 2023, 10 (3): 170-190.)
[5]
GODEL W, SANDERSON Z, ASLETT K, et al. Moderating with the mob: evaluating the efficacy of real-time crowdsourced fact-checking[J]. Journal of online trust and safety, 2021, 1(1):1-36.
[6]
ARUGUETE N, BACHMANN I, CALVO E, et al. Truth be told: how “true” and “false” labels influence user engagement with fact-checks[J/OL]. New media & society, 2023[2024-02-03]. https://doi.org/10.1177/14614448231193709 .
[7]
ECKER U K H, SANDERSON J A, MCILHINEY P, et al. Combining refutations and social norms increases belief change[J]. Quarterly journal of experimental psychology, 2023, 76(6): 1275-1297.
[8]
ANDI S, AKESSON J. Nudging away false news: evidence from a social norms experiment[J]. Digital journalism, 2020, 9(1): 106-125.
[9]
GIMPEL H, HEGER S, OLENBERGER C, et al. The effectiveness of social norms in fighting fake news on social media[J]. Journal of management information systems, 2021, 38(1): 196-221.
[10]
KIM A, MORAVEC P L, DENNIS A R. Combating fake news on social media with source ratings: the effects of user and expert reputation ratings[J]. Journal of management information systems, 2019, 36(3): 931-968.
[11]
PENNYCOOK G, EPSTEIN Z, MOSLEH M, et al. Shifting attention to accuracy can reduce misinformation online[J]. Nature, 2021, 592(7855): 590-595.
[12]
PENNYCOOK G, MCPHETRES J, ZHANG Y, et al. Fighting COVID-19 misinformation on social media: experimental evidence for a scalable accuracy-nudge intervention[J]. Psychological science, 2020, 31(7): 770-780.
[13]
LINDEN S V D. Misinformation: susceptibility, spread, and interventions to immunize the public[J]. Nature medicine, 2022, 28(3): 460-467.
[14]
邓胜利,孙瑾杰. 图书馆参与虚假健康信息治理的价值、阻滞因素和实现路径[J]. 图书情报工作, 2022, 66(9): 14-22.(DENG S L, SUN J J. The value, barriers and practical routes of libraries participating in health misinformation governance[J]. Library and information service, 2022, 66 (9): 14-22.)
[15]
周雅琦,敬卿,牛宇. “全民战疫”背景下图书馆参与虚假信息治理的研究[J]. 图书情报工作, 2020, 64 (15): 177-183. (ZHOU Y Q, JING Q, NIU Y. Study on library participating in the management of false information from the perspective of “everyone defense against virus”[J] Library and information service, 2020, 64(15): 177-183.)
[16]
LAZER D M J, BAUM M A, BENKLER Y, et al. The science of fake news[J]. Science, 2018, 359(6380): 1094-1096.
[17]
SCHEUFELE D A, KRAUSE N M. Science audiences, misinformation, and fake news[J]. Proceedings of the National Academy of Sciences, 2019, 116(16): 7662-7669.
[18]
杨洸,闻佳媛. 微信朋友圈的虚假健康信息纠错:平台、策略与议题之影响研究[J]. 新闻与传播研究, 2020, 27 (8): 26-43,126.(YANG G, WEN J Y. Health misinformation correction on Wechat moments: the impacts platform strategies and issues[J]. Journalism & communication, 2020, 27 (8): 26-43,126. )
[19]
汤景泰,陈秋怡,徐铭亮. 情感共同体与协同行动:香港“修例风波”中虚假信息的动员机制[J]. 新闻与传播研究, 2021, 28 (8): 58-76,127.(TANG J T, CHEN Q Y, XU M L. Emotional community and concerted action: on the emotional mobilization mechanism of disinformation in anti-extradition law protests in Hong Kong[J]. Journalism & communication, 2021, 28 (8): 58-76,127.)
[20]
张志勇,荆军昌,李斐,等. 人工智能视角下的在线社交网络虚假信息检测、传播与控制研究综述[J]. 计算机学报, 2021, 44 (11): 2261-2282.(ZHANG Z Y, JIN J C, LI F, et al. Survey on fake information detection, propagation and control in online social networks from the perspective of artificial intelligence[J]. Chinese journal of computers, 2021, 44 (11): 2261-2282. )
[21]
DENNIS A R, GALLETTA D F, WEBSTER J. Fake news on the internet[J]. Journal of management information systems, 2021, 38(4): 893-897.
[22]
MORAVEC P L, KIM A, DENNIS A R, et al. Do you really know if it’s true? how asking users to rate stories affects belief in fake news on social media[J]. Information systems research, 2022, 33(3): 887-907.
[23]
WEI X, ZHANG Z, ZHANG M, et al. Combining crowd and machine intelligence to detect false news on social media[J]. MIS quarterly, 2022, 53(4): 20-36.
[24]
MUSI E, CARMI E, REED C, et al. Developing misinformation immunity: how to reason-check fallacious news in a human–computer interaction environment[J]. Social media+ society, 2023,9(1): 20563051221150407.
[25]
吴月华,胡杰,李武. 社会规范对大学生网络学术不端行为的影响机制研究[J]. 图书情报工作, 2021, 65 (5): 61-71. (WU Y H, HU J, LI W. A study of the impact of social norm on college students' online academic misconduct[J].Library and information service , 2021, 65(5): 61-71.)
[26]
REYNOLDS K J. Social norms and how they impact behaviour. Nature human behaviour, 2019, 3(1): 14-15.
[27]
NYBORG K, ANDERIES J M, DANNENBERG A, et al. Social norms as solutions[J]. Science, 2016, 354(6308): 42-43.
[28]
PRYOR C, PERFORS A, HOWE P D L. Even arbitrary norms influence moral decision-making[J]. Nature human behaviour, 2019, 3(1): 57-62.
[29]
钱明辉,赵梦纯. 社会规范类型对说服性健康信息采纳意愿的影响研究 [J]. 图书情报工作, 2023, 67 (18): 102-112.(QIAN M H, ZHAO M C. Research on the influence of social norms types on the willingness to adopt persuasive health information[J]. Library and information service, 2023, 67 (18): 102-112.)
[30]
KORMOS C, GIFFORD R, BROWN E. The influence of descriptive social norm information on sustainable transportation behavior: a field experiment[J]. Environment and behavior, 2015, 47(5): 479-501.
[31]
DEMARQUE C, CHARALAMBIDES L, HILTON D J, et al. Nudging sustainable consumption: the use of descriptive norms to promote a minority behavior in a realistic online shopping environment[J]. Journal of environmental psychology, 2015, 43: 166-174.
[32]
ZHOU H, LU Y, ZHAO L, et al. Effective reporting system to encourage users’ reporting behavior in social media platforms: an empirical study based on structural empowerment theory [EB/OL]. Behaviour & information technology, 2023:1-20. https://doi.org/10.1080/0144929X.2023.2281491
[33]
CHUNG M, MOON W K, JONES-JANG S M. AI as an apolitical referee: using alternative sources to decrease partisan biases in the processing of fact-checking messages [EB/OL]. Digital Journalism, 2023: 1-22. https://doi.org/10.1080/21670811.2023.2254820
[34]
赵文军,孙丽,易明. 在线健康谣言辟谣效果的影响机制研究:信息框架、信息来源及话题卷入度的作用[J]. 图书情报工作, 2023, 67(4): 80-90.(ZHAO W J, SUN L, YI M. Research on the influence mechanism of online health rumor refuting effect: the role of message framework, information source and topic involvement[J]. Library and information service, 2023, 67(4): 80-90.)
[35]
YUAN S, LOU C. How social media influencers foster relationships with followers: the roles of source credibility and fairness in parasocial relationship and product interest[J]. Journal of interactive advertising, 2020, 20(2): 133-147.
[36]
NEKMAT E, GOWER K K, ZHOU S, et al. Connective-collective action on social media: moderated mediation of cognitive elaboration and perceived source credibility on personalness of source[J]. Communication research, 2019, 46(1): 62-87.
[37]
LUO C, LUO X R, SCHATZBERG L, et al. Impact of informational factors on online recommendation credibility: the moderating role of source credibility[J]. Decision support systems, 2013, 56(12): 92-102.
[38]
脉脉:互联网公司传言首发地[EB/OL].[2023-12-19]. https://finance.sina.com.cn/chanjing/gsnews/2022-04-14/doc-imcwiwst1787989.shtml.(Maimai: The first place of Internet company rumors[EB/OL].[2023-12-19]. https://finance.sina.com.cn/chanjing/gsnews/2022-04-14/doc-imcwiwst1787989.shtml.)
[39]
脉脉被B站将了一军[EB/OL].[2023-12-19]. https://www.jiemian.com/article/5566674.html.( Maimai was defeated by Bilibili[EB/OL].[2023-12-19]. https://www.jiemian.com/article/5566674.html.)

李瑾颉:提出研究命题及研究思路,修改论文;

聂凯伦:收集与分析数据;

吴联仁:进行实验设计,撰写与修改论文;

齐佳音:指导研究过程,修改论文。

Funding

Project of Humanities and Social Sciences, Ministry of Education in China titled “From Interpersonal to Human-machine Communication: A Study of Public Disinformation Involvement Behavior and Governance Under Computational Propaganda”(23YJC630081)
General Program of National Natural Science Foundation of China titled “A Study of Infodemic Governance Based on Public Social Media Involvement Interventions”(72274119)
PDF(1631 KB)

Accesses

Citation

Detail

Sections
Recommended

/