Research on Influencing Factors of Video Popularity Based on Three Popular Factors: Taking BiliBili Website as an Example

Ji Haixiang, Ren Nan

Knowledge Management Forum ›› 2022, Vol. 7 ›› Issue (1) : 49-60.

PDF(1303 KB)
PDF(1303 KB)
Knowledge Management Forum ›› 2022, Vol. 7 ›› Issue (1) : 49-60. DOI: 10.13266/j.issn.2095-5472.2022.005

Research on Influencing Factors of Video Popularity Based on Three Popular Factors: Taking BiliBili Website as an Example

Author information +
History +

Abstract

[Purpose/Significance] This study explores the non content influencing factors of the video popularity of the typical bullet screen video website BiliBili website (hereinafter referred to as station B), and analyzes the possible impact on the video popularity from the perspectives of video attributes, the creator's platforms and social attributes, so as to provide some guidances for the future development of users and platforms of station B and other relevant new media video websites. [Method/Process] The formation process model of video popularity was constructed based on 5W mode, and the influencing factor model of video popularity was constructed based on the popular three element theory. Through crawling objective data, the heat index was measured by principal component analysis, and the influencing factors were empirically studied by multiple regression. [Result/Conclusion] The personal authentication, the number of fans and authentications of video creators and the length of the video description have a significant positive impact on the video popularity; The length of the video title has a significant negative impact on the video popularity. Videos released in the idle state of life are generally hot; And videos released in sleep, the overall heat is low.

Key words

BiliBili website / video popularity / 5W mode / three elements of popularity / empirical analysis

Cite this article

Download Citations
Ji Haixiang , Ren Nan. Research on Influencing Factors of Video Popularity Based on Three Popular Factors: Taking BiliBili Website as an Example[J]. Knowledge Management Forum. 2022, 7(1): 49-60 https://doi.org/10.13266/j.issn.2095-5472.2022.005

References

[1]
哔哩哔哩. Bilibili Inc. announces second quarter 2021 financial results [EB/OL]. [2021-10-12]. https:// ir.bilibili.com/.
[2]
SZABO G, HUBERMAN B A. Predicting the popularity of online content [J]. Communications of the ACM, 2010, 53(8):80-88.
[3]
JIA A L, SHEN S Q, LI D S, et al. Predicting the implicit and the explicit video popularity in a user generated content site with enhanced social features [J]. Computer networks, 2018, 140:112-125.
[4]
相甍甍, 王晰巍, 郭顺利. 高校图书馆微信公众号信息传播效果的影响因素分析 [J]. 现代情报, 2018, 38(3):37-44.
[5]
OUYANG S X, LI C Y, LI X M. Analyzing the dynamics of online video popularity [J]. The journal of China universities of posts and elecommunications, 2017,24(3):58-69.
[6]
巫霞, 马亮. 政务短视频的传播力及其影响因素:基于政务抖音号的实证研究 [J]. 电子政务, 2019(7):22-30.
[7]
张燕, 韦欣宜, 尹琰. 《新闻联播》快手短视频内容与传播热度影响因素探究 [J]. 电视研究, 2020(8):73-76.
[8]
王霞, 梁栋. 弹幕数量和弹幕情感强度对视频流行度的影响 [J]. 营销科学学报, 2019, 15(2):132-156.
[9]
马艺丹, 刘佳炜. 吃播视频热度相关因素研究——基于哔哩哔哩弹幕视频平台的内容分析 [C]//医疗、人文、媒介——“健康中国”与健康传播2020国际学术研讨会论文集. 北京:北京大学新闻与传播学院,2020: 16.
[10]
爱奇艺在线视频网站 [EB/OL]. [2021-10-18]. https://www.iqiyi.com/.
[11]
方婧, 陆伟. 微信公众号信息传播热度的影响因素实证研究 [J]. 情报杂志, 2016, 35(2):157-162.
[12]
吴中堂, 刘建徽, 唐振华. 微信公众号信息传播的影响因素研究 [J]. 情报杂志, 2015, 34(4):122-126.
[13]
纪慧生, 蔡东妮. 微信公众号信息传播影响因素分析 [J]. 集美大学学报(哲社版), 2016, 19(4):107-115.
[14]
刘行军, 甘春梅, 王伟军. 基于U&G理论的微博信息传播影响因素实证分析 [J]. 情报科学, 2016, 34(3):139-144.
[15]
SCHEIBE K, FIETKIEWICZ K J, STOCK W G. Information behavior on social live streaming services [J]. Journal of information science theory and practice, 2016, 4(2):6-20.
[16]
Zimmer F, SCHEIBE K, STOCK W G. A model for information behavior research on social live streaming services (SLSSs) [C]. Cham: Springer International Publishing, 2018: 429-448.
[17]
DENG T, ZHANG Z, MING Q. Social media video popularity evolution analyzing based on information spreading model [C]//Proceedings of 2015 6th IEEE international conference on software engineering and service science (ICSESS). Beijing: ICSESS ,2015:1143-1147.
[18]
MA C S, YAN Z S, CHEN C W . LARM: a lifetime aware regression model for predicting YouTube video popularity [C]// Proceedings of the 2017 ACM on conference on information and knowledge management. New York: ACM, 2017:467-476.
[19]
邢雨晴, 刘红翠, 周瑞, 等. 微博信息传播模式及其应用的实证研究的文献综述 [J]. 中国外资, 2012(18):275,277.
[20]
赵蓉英, 曾宪琴. 微博信息传播的影响因素研究分析 [J]. 情报理论与实践, 2014, 37(3):58-63.
[21]
柯赟. 新浪微博信息传播的影响因素分析与效果预测 [J]. 现代情报, 2016, 36(3):22-26.
[22]
MOUSSAID M, HELBING D, THERAULAZ G. An individual-based model of collective attention [J/OL]. [2021-12-10]. https://arxiv.org/ftp/arxiv/papers/0909/0909.2757.pdf.
[23]
丛挺, 杨圣琪. 移动场景下出版机构短视频传播实证分析 [J]. 中国出版, 2020(6):3-7.
[24]
FIETKIEWICZ K J, STOCK W G. Introduction to the minitrack on live streaming services [C]// Proceedings of the 52nd Hawaii international conference on system sciences. Honolulu: HICSS (ScholarSpace), 2019:2536-2537.
[25]
SUSSMAN S W, SIEGAL W S. Informational influence in organizations: an integrated approach to knowledge adoption [J]. Information systems research, 2003, 14(1):47-65.
[26]
孙婷婷. 移动短视频传播效果影响因素研究 [D].哈尔滨:哈尔滨工业大学,2019.
[27]
商丽丽, 王涛. 基于用户信息行为的微信健康信息关注度研究 [J]. 情报科学, 2019, 37(8):132-138.
[28]
MACKAY D. An example inference task: clustering[M]. Cambridge: Cambridge University Press, 2003.
[29]
杨玉宇, 张鹏翼. 视频社会化标引与标引娱乐化研究——以哔哩哔哩弹幕网为例 [J]. 图书情报工作, 2020, 64(8):125-133.
[30]
冯悦. 支持混音的OIC中用户贡献水平影响因素与用户分类研究 [D]. 镇江:江苏科技大学,2019.
[31]
陈强, 张杨一, 马晓悦, 等. 政务B站号信息传播效果影响因素与实证研究 [J]. 图书情报工作, 2020, 64(22):126-134.
[32]
赵杨, 宋倩, 高婷. 高校图书馆微博信息传播影响因素研究——基于新浪微博平台 [J]. 图书馆论坛, 2015, 35(1):93-99.
[33]
GUAN W Q, GAO H Y, YANG M M, et al. Analyzing user behavior of the micro-blogging website Sina Weibo during hot social events [J]. Physica A: atatistical mechanics and its applications, 2014, 395:340-351.
[34]
阳德青, 肖仰华, 汪卫. 基于统计模型的社会网络群体关注度的分析与预测 [J].计算机研究与发展,2010(47):378-384.

嵇海香:负责论文选题与构思,进行文献整理、数据收集与分析,撰写初稿

任南:提出论文修改意见,指导梳理文章逻辑,参与论文修订

PDF(1303 KB)

Accesses

Citation

Detail

Sections
Recommended

/