Construction of "Red Memory" Knowledge Graph Based on Multi-source Heterogeneous Data Mining

Guo Jiaxin

Knowledge Management Forum ›› 2020, Vol. 5 ›› Issue (1) : 59-68.

PDF(1481 KB)
PDF(1481 KB)
Knowledge Management Forum ›› 2020, Vol. 5 ›› Issue (1) : 59-68. DOI: 10.13266/j.issn.2095-5472.2020.006

Construction of "Red Memory" Knowledge Graph Based on Multi-source Heterogeneous Data Mining

Author information +
History +

Abstract

[Purpose/significance] Red cultural resources are produced in the process of the Chinese nation and the Chinese Communists' pursuit of truth. Constructing "red memory" by organizing and mining knowledge of red cultural resources can not only enhance national self-confidence and cohesiveness, but also be an important part of cultural self-confidence. There may be many problems when using red cultural resources, such as wide distribution, multiple sources and types, limited content and low degree of organization. In order to make full use of red cultural resources, this paper constructs a "red memory" knowledge graph based on multi-source heterogeneous data. [Method/process] Firstly, this paper constructed a red cultural resource ontology library for knowledge modeling of “red memory”. Secondly, it analyzed the composition and characteristics of red cultural resources collected through multiple channels and extract entities, attributes, relationships. Finally, the "red memory" knowledge graph was constructed through knowledge fusion and storage.[Result/conclusion] By constructing the "red memory" knowledge graph, it is possible to mine deep relationship on multi-source heterogeneous red cultural resource data, improve the organization degree of red cultural resources, and realize of intelligent services of red cultural resources.

Key words

red cultural resources / knowledge graph construction / knowledge modeling

Cite this article

Download Citations
Guo Jiaxin. Construction of "Red Memory" Knowledge Graph Based on Multi-source Heterogeneous Data Mining[J]. Knowledge Management Forum. 2020, 5(1): 59-68 https://doi.org/10.13266/j.issn.2095-5472.2020.006

References

[1]
SINGHA A. Introducing the knowledge graph: things, not strings[EB/OL].[2019-04-10].http://googleblog.blogspot.co.uk/2012/05/introducing-knowledge-graph-things-not.html.
[2]
SUCHANEK F M, KASNECI G, WEIKUM G. Yago: a core of semantic knowledge[C]//Proceedings of the 16th international conference on World Wide Web. New York:ACM,2007:697-706.
[3]
DONG X, GABRILOVICH E, HEITZ G, et al. Knowledge vault: a web-scale approach to probabilistic knowledge fusion[C] //International conference on knowledge discovery and data mining. New York:ACM,2014:601-610.
[4]
XU B, XU Y, LIANG J, et al. CN-DBpedia: a never-ending Chinese knowledge extraction system[C]//International conference on industrial, engineering and other applications of applied intelligent systems. Berlin:Springer,2017:428-438.
[5]
WANG Z, LI J, WANG Z, et al. XLore: a large-scale English-Chinese bilingual knowledge graph[C]//International semantic Web conference. New York:ACM,2013:121-124.
[6]
胡果,张荣秀.中华红色文化的主要特质及时代价值[J].山西广播电视大学学报, 2017(1):103-105.
[7]
王茂春.特色文化资源与高新技术融合的路径探索[J].中华文化论坛, 2015(6):128-133.
[8]
王玉平,张同乐,张志永.西柏坡红色文化资源数据库建设热议[J].河北师范大学学报(哲学社会科学版),2014,37(1):140-145.
[9]
李实.准确认识“红色资源”的丰富内涵[J].政工学刊,2005(12):23.
[10]
漆桂林,高桓,吴天星.知识图谱研究进展[J].情报工程,2017,3(1):4-25.
[11]
刘峤,李杨,段宏,等.知识图谱构建技术综述[J].计算机研究与发展,2016,53(3):582-600.
[12]
马灿.面向“智慧法院”的知识图谱构建方法与研究[D].贵州:贵州大学,2019.
[13]
GRUBER T R. Toward principles for the design of ontologies used for knowledge sharing?[J].International journal of human-computer studies,1995,43(5/6):907-928.
[14]
岳丽欣,刘文云.国内外领域本体构建方法的比较研究[J].情报理论与实践,2016,39(8):119-125.
[15]
张泰城.论红色文化资源[J].红色文化资源研究,2015,1(1):1-11.
[16]
渠长根,闻洁璐.红色文化资源研究综述[J].浙江理工大学学报(社会科学版),2019,42(2):179-187.
[17]
张泰城.论红色文化资源的分类[J].中国井冈山干部学院学报,2017,10(4):137-144.
[18]
张克伟.沂蒙红色文化资源产业化研究[D].济南:山东大学,2010.
[19]
许庆领.人文地理信息整合及可视化关键技术研究[D].阜新:辽宁工程技术大学,2012.
[20]
郭文龙.中医方剂知识图谱构建研究与实现[D].兰州:兰州大学,2019.
[21]
张晓艳,王挺,陈火旺.命名实体识别研究[J].计算机科学,2005(4):44-48.
[22]
王良萸.基于web数据的碳交易领域知识图谱构建研究[D].马鞍山:安徽工业大学,2018.
[23]
蒋秉川,万刚,许剑,等.多源异构数据的大规模地理知识图谱构建[J].测绘学报, 2018,47(8):1051-1061.
[24]
吴雪峰,赵志凯,王莉,等.煤矿巷道支护领域知识图谱构建[J].工矿自动化,2019,45(6):42-46.
PDF(1481 KB)

Accesses

Citation

Detail

Sections
Recommended

/