
基于元分析的网络用户评论表达真实性研究
Research on the Authenticity of Online User Comment Expression Based on Meta Analysis
【目的/意义】 随着网络用户数量快速增长,网络评论对用户的影响越来越大并在一定程度上影响人们在网络上的选择和行为。针对当前网络评论研究中真实性评估不足的问题,通过元分析量化评估网络评论真实性,揭示不真实评论的分布规律,为相关研究的数据可靠性判断提供依据。 【方法/过程】 在相关领域对于评论真实性相关因素研究较少的客观情况下,创新性地提出利用不真实评论比例这一差异类变量进行元分析。采用异质性检验、发表偏倚检验和随机效应模型进行元分析,结合可视化工具解析不同平台、不同类型评论的不真实情况。 【结果/结论】 各类网络评论平台普遍存在超过15%的不真实评论且占比持续上升,结果根据平台类型、国内外环境等因素产生一定的差异性。学界较多选取的评论平台中,独立于商家、客户的第三方评论平台(如大众点评、Yelp等)中不真实评论最少存在15%左右;独立于用户的卖家平台(如京东、亚马逊等)中不真实评论较多,占比达到20%左右;而不具备商业属性的用户自建平台(如微博、博客等)中不真实评论数量最多,占比超过25%以上,其中大多数为谣言和垃圾评论。
[Purpose/Significance] With the rapid growth of online users, online comments increasingly influence users’ choices and behaviors on the internet. To address the insufficient assessment of authenticity in current online comment research, this study employs meta-analysis to quantitatively evaluate the authenticity of online comments, revealing the distribution patterns of online comments, revealing the distribution patterns of inauthentic comments, and providing a reference for data reliability judgment in related studies. [Method/Process] Given the limited research on factors related to comment authenticity, this study innovatively proposed to use the proportion of inauthentic comments as a differential variable for meta-analysis. Heterogeneity tests, publication bias tests, and random-effects models were applied, combined with visualization tools to analyze inauthenticity across different platforms and comment types. [Result/Conclusion] There are generally over 15% of untrue comments, and the proportion continues to rise. The results vary depending on factors such as platform type and domestic and international environment. Among the review platforms widely selected by academia, there are at least 15% of untrue reviews on third-party review platforms (such as Dianping, Yelp, etc.) that are independent of merchants and customers; There are many untrue reviews on seller platforms independent of users (such as JD.com, Amazon, etc.), accounting for about 20%; In user built platforms without commercial attributes (such as Weibo, blogs, etc.), the number of untrue comments is the highest, accounting for more than 25%, most of which are rumors and junk comments.
meta analysis / online comments / authenticity / fake review
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
武雅利, 徐勇, 焦梦蕾, 等. 基于在线交易的虚假评论与网络水军研究综述[J]. 现代计算机, 2019(21): 37-40.
WU, Y L,
|
[6] |
王宁, 宋嘉莹, 杨学成. C2C电商平台中在线评论偏离真实性的诱因及应对策略[J]. 软科学, 2017, 31(4): 100-103.
|
[7] |
李璐旸, 秦兵, 刘挺. 虚假评论检测研究综述[J]. 计算机学报, 2018, 41(4): 946-968.
|
[8] |
魏瑾瑞, 徐晓晴. 虚假评论、消费决策与产品绩效——虚假评论能产生真实的绩效吗[J]. 南开管理评论, 2020, 23(1): 189-199.
|
[9] |
陈燕方, 娄策群. 在线商品虚假评论形成路径研究[J]. 现代情报, 2015, 35(1): 49-53.
|
[10] |
|
[11] |
刘建明. 舆论传播[M]. 北京: 清华大学出版社, 2000.
|
[12] |
|
[13] |
王永贵, 张言彩.元分析方法在国内外经济管理研究中的应用比较[J]. 经济管理, 2012, 34(4): 182-190.
|
[14] |
彭国超, 程晓, 刘彩华. 基于元分析的网络用户个人信息披露意愿影响因素研究[J]. 现代情报, 2022, 42(11): 111-120.
|
[15] |
杨笑. 基于元分析的电子商务平台评论有用性影响因素研究[D]. 北京: 北京外国语大学, 2022.
|
[16] |
|
[17] |
万晨. 不同平台在线评论消费者感知差异研究——产品类型的调节作用[J]. 现代情报, 2014, 34(12): 154-158, 167.
|
[18] |
|
[19] |
|
[20] |
曾昭炳, 姚继军. 寻找“最佳证据”:如何运用元分析进行文献综述——以STEM教育对学生成绩的影响研究为例[J]. 华东师范大学学报(教育科学版), 2020, 38(6): 70-85.
|
[21] |
严炜炜, 陈若瑜, 张敏. 基于元分析的在线知识付费意愿影响因素研究[J]. 情报学报, 2021, 40(2): 204-212.
|
[22] |
韩继峰. 基于元分析的用户标注动机影响因素研究[J]. 情报探索, 2019(3): 6-10.
|
[23] |
夏凌翔. 元分析及其在社会科学研究中的应用[J]. 西北师大学报(社会科学版), 2005, 42(5): 55-58.
|
[24] |
|
[25] |
|
[26] |
任亚峰, 姬东鸿, 张红斌, 等. 基于PU学习算法的虚假评论识别研究[J]. 计算机研究与发展, 2015, 52(3): 639-648.
|
[27] |
|
[28] |
|
张鑫众:撰写论文,收集与分析数据,修改论文;
徐健:提出思路,修改论文;
张雯昕:收集与整理数据,撰写论文;
王玥瑄:收集与整理数据,撰写论文;
李文睿:收集与整理数据,撰写论文;
盛清泉:收集与整理数据,撰写论文。
/
〈 |
|
〉 |