基于知识图谱的实验方案推荐研究——以有机太阳能电池为例

张凯, 石栖

知识管理论坛 ›› 2024, Vol. 9 ›› Issue (5) : 448-459.

PDF(1986 KB)
PDF(1986 KB)
知识管理论坛 ›› 2024, Vol. 9 ›› Issue (5) : 448-459. DOI: 10.13266/j.issn.2095-5472.2024.033  CSTR: 32306.14.CN11-6036.2024.033
研究论文

基于知识图谱的实验方案推荐研究——以有机太阳能电池为例

作者信息 +

Experimental Scheme Recommendation Based on Knowledge Graph: A Case Study of Organic Solar Cells

Author information +
文章历史 +

摘要

[目的/意义] 深入分析AI4Science中的实验方案,通过分析科技文献中的实验方案,揭示AI技术在科研方法、工具和手段中的应用,为科研工作者提供新的研究视角。[方法/过程] 首先,利用本体建模技术,实现不同学科领域实验方法与实验原理的统一知识建模,在本体建模的基础上构建有机太阳能电池领域知识图谱。然后,在领域知识图谱中挖掘实体之间关系,实现实验方案智能化推荐。[结果/结论] 结合图嵌入表征技术Graph2vec和大模型语义嵌入表征GPT embedding,提出一种全新的知识图谱语义融合的实验方案推荐算法—GraphGPT Net,在Recall@20推荐核心指标上表现最为出色,达到了0.0299,能够证明知识图谱在实验方案推荐领域的有效性以及GraphGPT Net在推荐实验方案方面的显著能力。

Abstract

[Purpose/Significance] Currently, the paradigm of data-intensive scientific discovery in scientific research is evolving towards intelligence. AI-driven scientific research (AI4Science) is becoming the engine of technological innovation and a new paradigm for scientific research. This study will delve into the experimental schemes within AI4Science, revealing the application of AI technology in research methods, tools, and means through the analysis of experimental schemes in scientific literature, providing new research perspectives for scientific researchers. [Method/Process] ① Knowledge extraction and modeling of the experimental scheme. Ontology modeling technology was used to realize the unified knowledge modeling of experimental methods and experimental principles in different subject areas. The domain knowledge graph of organic solar cells was constructed on the basis of ontology modeling. ② Research on intelligent recommendation of the experimental scheme based on the knowledge graph. The relationship between entities was mined in the domain knowledge graph to realize the intelligent recommendation of the experimental scheme. [Result/Conclusion] On the basis of Graph2vec representation technology and GPT embedding representation, GraphGPT Net is proposed as a new algorithm for knowledge graph semantic integration of the experimental scheme. The best performance is achieved on Recall@20 with a score of 0.0299, which proves its remarkable ability to recommend experimental schemes.

关键词

知识图谱 / 有机太阳能电池 / 实验方案 / 推荐系统

Key words

knowledge graph / organic solar cells / experimental scheme / recommendation system

引用本文

导出引用
张凯 , 石栖. 基于知识图谱的实验方案推荐研究——以有机太阳能电池为例[J]. 知识管理论坛. 2024, 9(5): 448-459 https://doi.org/10.13266/j.issn.2095-5472.2024.033
Kai Zhang , Qi Shi. Experimental Scheme Recommendation Based on Knowledge Graph: A Case Study of Organic Solar Cells[J]. Knowledge Management Forum. 2024, 9(5): 448-459 https://doi.org/10.13266/j.issn.2095-5472.2024.033
中图分类号: G202   

参考文献

[1]
孙蒙鸽, 黄雨馨, 韩涛, 等. 科研智能化新趋势下知识服务的挑战与机遇[J]. 情报杂志, 2022, 41(6): 173-181,107.(SUN M G, HUANG Y X, HAN T, et al. Challenges and opportunities of knowledge service under the new trend of intelligent scientific research [J]. Journal of information technology, 2022, 41(6): 173-181,107.)
[2]
GUO Q, ZHUANG F, QIN C, et al. A survey on knowledge graph-based recommender systems[J]. IEEE transactions on knowledge and data engineering, 2022, 34(8): 3549-3568.
[3]
徐增林,盛泳潘,贺丽荣,等. 知识图谱技术综述[J]. 电子科技大学学报,2016,45(4):589-606.( XU Z L, SHENG Y P, HE L R. Review on knowledge graph techniques[J].Journal of University of Electronic Science and Technology of China, 2016,45(4): 589-606.)
[4]
DIOMEDI D, HOGAN A. Question answering over knowledge graphs with neural machine translation and entity linking[EB/OL].[2024-06-19].https://doi.org/10.48550/arXiv.2107.02865.
[5]
XI D, ZHUANG F, LIU Y, et al. Modelling of bi-directional spatio-temporal dependence and users’ dynamic preferences for missing POI check-in identification[EB/OL].[2024-06-19]. https://doi.org/10.48550/arXiv.2112.15285.
[6]
WANG H, ZHANG F, XIE X, et al. DKN: deep knowledge-aware network for news recommendation[EB/OL].[2024-06-19]. https://doi.org/10.48550/arXiv.1801.08284.
[7]
LIU H, TONG Y, HAN J, et al. Incorporating multi-source urban data for personalized and context-aware multi-modal transportation recommendation[J]. IEEE transactions on knowledge and data engineering, 2022, 34(2): 723-735.
[8]
HUANG Z, LIU Q, ZHAI C, et al. Exploring multi-objective exercise recommendations in online education systems [C]//Proceedings of the 28th ACM international conference on information and knowledge management. New York: Association for Computing Machinery, 2019:1261-1270.
[9]
SHI Y, LARSON M, HANJALIC A. Collaborative filtering beyond the user-item matrix: a survey of the state of the art and future challenges[J]. ACM computing surveys, 2014, 47(1): 1-45.
[10]
RENDLE S. Factorization machines [C]// Proceedings of IEEE international conference on data mining. Sydney: IEEE, 2010: 995-1000.
[11]
HE X , CHUA T S .Neural factorization machines for sparse predictive analytics[J].ACM SIGIR forum, 2017, 51(cd):355-364.
[12]
ZHANG Y , AI Q , CHEN X,et al. Learning over knowledge-base embeddings for recommendation[EB/OL].[2024-06-19]. https://doi.org/10.48550/arXiv.1803.06540.
[13]
ZHANG F, YUAN N J, LIAN D, et al. Collaborative knowledge base embedding for recommender systems[C]// Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining(KDD '16)., New York: Association for Computing Machiner, 2016, 353-362.
[14]
BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th international conference on neural information processing systems - Volume 2 (NIPS'13).New York: Curran Associates Inc, 2016: 2787-2795.
[15]
WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI conference on artificial intelligence(AAAI'14). Quebec: AAAI Press, 2014: 1112–1119.
[16]
LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI conference on artificial intelligence. Austin: AAAI Press, 2015: 2181-2187.
[17]
JI G, HE S, XU L, et al. Knowledge Graph Embedding via Dynamic Mapping Matrix[C]//Proceedings of the 53rd annual meeting of the Association for Computational Linguistics and the 7th international joint conference on natural language processing (Volume 1: Long Papers). Beijing: Association for Computational Linguistics, 2015: 687-696.
[18]
JI G, LIU K, HE S, et al. Knowledge graph completion with adaptive sparse transfer matrix[C]//Proceedings of the 30th AAAI conference on artificial intelligence. Phoenix: AAAI Press, 2016: 985-991.
[19]
SUN Z, YANG J, ZHANG J, et al. Recurrent knowledge graph embedding for effective recommendation[C]//Proceedings of the 12th ACM conference on recommender systems. Vancouver: ACM, 2018: 297-305.
[20]
WANG H, ZHANG F, WANG J, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM international conference on information and knowledge management (CIKM '18). New York: Association for Computing Machinery, 2018: 417-426.
[21]
WANG X, HE X, CAO Y, et al. KGAT: knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (KDD '19). New York: Association for Computing Machinery, 2019: 950-958.
[22]
吕爽. 基于叙词表的医学领域本体的构建研究[D]. 长春:吉林大学, 2011.(LÜ S. Research on the construction of medical domain ontology based on thesaurus[D]. Changchun: Jilin University, 2011.)
[23]
严婷婷. 高效三元有机太阳能电池的制备及性能研究[D]. 宁波:中国科学院大学(中国科学院宁波材料技术与工程研究所), 2022.(YAN T T. Preparation and properties of high efficiency terpolymer solar cells[D]. Ningbo: University of Chinese Academy of Sciences (Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences), 2022.)
[24]
HE X, LIAO L, ZHANG H, et al. Neural collaborative filtering[C]//Proceedings of the 26th international conference on World Wide Web (WWW '17). Perth: International World Wide Web Conferences Steering Committee, 2017: 173-182.
[25]
RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th conference on uncertainty in artificial intelligence (UAI '09). Arlington: AUAI Press, 2019, 452-461.
[26]
AI Q, AZIZI V, CHEN X, et al. Learning heterogeneous knowledge base embeddings for explainable recommendation[J]. Algorithms, 2018, 11(9),132-137.
[27]
ZHANG F , YUAN N J , LIAN D ,et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (KDD '16). New York: Association for Computing Machinery, 2016, 353-362.
[28]
NARAYANAN A, CHANDRAMOHAN M, VENKATESAN R, et al. Graph2vec: learning distributed representations of graphs[EB/OL].[2024-06-19]. https://doi.org/10.48550/arXiv.1707.05005.
[29]
DAI D, SUN Y, DONG L, et al. Why can GPT learn in-context? language models implicitly perform gradient descent as meta-optimizers[EB/OL].[2024-06-19]. https://doi.org/10.48550/arXiv.2212.10559.

作者贡献说明/Author contributions:

张 凯:撰写论文,基于论文数据进行技术分析;

石 栖:构建数据库,提出修改意见。

致谢/Acknowledgement

感谢中国科学院成都文献情报中心胡正银老师的团队对本研究在数据和技术上的大力支持。

基金

国家社会科学基金项目“支撑AI4Science的科技图书馆知识服务内容研究”(22BTQ019)
中国科学院文献情报能力建设专项项目“‘智慧数据+AI’支撑科学创新实验方法的推理发现研究”(E329090905)

PDF(1986 KB)

Accesses

Citation

Detail

段落导航
相关文章

/