大模型在知识管理中的应用与挑战

张宇, 王玉梁

知识管理论坛 ›› 2024, Vol. 9 ›› Issue (3) : 227-236.

PDF(1841 KB)
PDF(1841 KB)
知识管理论坛 ›› 2024, Vol. 9 ›› Issue (3) : 227-236. DOI: 10.13266/j.issn.2095-5472.2024.017
综述述评

大模型在知识管理中的应用与挑战

作者信息 +

Applications and Challenges of Large Models in Knowledge Management

Author information +
文章历史 +

摘要

[目的/意义] 分析大模型在知识管理领域的应用场景和挑战,为相关领域的研究和实践提供参考和借鉴,促进大模型在知识管理领域更加深入的应用,提高知识管理工具的使用体验。[方法/过程] 通过跟踪软硬件厂商、商业化产品、开源项目、学术研究和客户的实际使用体验等多方面的动态,总结和梳理人工智能大模型在知识管理领域的实际应用以及在应用过程中面临的问题与挑战。[结果/结论] 人工智能大模型已成为知识管理的有力工具,得到越来越多的实际应用,包括辅助撰写文档、自动生成文档摘要、使用自然语言检索信息、智能问答等。这些应用改变了传统知识管理的方式,使其更高效、智能化和用户友好。然而,大模型在知识管理领域的应用也面临着一些尚待解决的问题,如数据隐私保护、知识产权保护、知识污染、高成本、内容输出不稳定等。

Abstract

[Purpose/Significance] By analyzing the application scenarios and challenges of large models in the field of knowledge management, this paper aims to provide reference and inspiration for research and practice in related fields, promote the deeper application of large models in the field of knowledge management, and improve the user experience of knowledge management tools. [Method/Process] By tracking the dynamics of software and hardware vendors, commercial products, open source projects, academic research, and actual customer experience, the practical application of large models in the field of knowledge management, and the problems and challenges faced in the process were summarized and sorted out. [Result/Conclusion] Large models have become a powerful tool for knowledge management and have more and more practical applications, including assisting in document writing, automatically generating document summaries, using natural language to retrieve information, intelligent question answering, etc. These applications have changed the way traditional knowledge management operates, making it more efficient, intelligent, and user-friendly. However, the application of large models in the field of knowledge management also faces some unresolved problems, such as data privacy protection, intellectual property rights protection, knowledge pollution, high costs, and unstable content output, which have yet to be solved.

关键词

大模型 / 知识管理 / 知识库 / 人工智能

Key words

large model / knowledge management / knowledge base / artificial intelligence

引用本文

导出引用
张宇 , 王玉梁. 大模型在知识管理中的应用与挑战[J]. 知识管理论坛. 2024, 9(3): 227-236 https://doi.org/10.13266/j.issn.2095-5472.2024.017
Zhang Yu , Wang Yuliang. Applications and Challenges of Large Models in Knowledge Management[J]. Knowledge Management Forum. 2024, 9(3): 227-236 https://doi.org/10.13266/j.issn.2095-5472.2024.017
中图分类号: TP391   

参考文献

[1]
陈劲,赵闯,贾筱,等. 重构企业技术创新能力评价体系:从知识管理到价值创造[J]. 技术经济,2017,36(9):1-8,30.(CHEN J, ZHAO C, JIA X, et al. Reconstructing firm’s technological innovation capability evaluation system: from knowledge management to value creation[J]. Technology economics,2017,36(9):1-9.)
[2]
宋建元,陈劲.企业隐性知识共享的效率分析[J].科学学与科学技术管理,2005(2):58-61.(SONG J Y, CHEN J. Efficiency analysis of enterprise implicit knowledge sharing[J]. Science of science and management of S.&.T.,2005(2):58-61.)
[3]
赵闯,陈劲,薛澜.用知识管理打造企业核心能力——从C919首飞成功看中国商飞的“双屏创新”[J].清华管理评论,2017(5):35-39.(ZHAO C, CHEN J, XUE L. Building core competence of enterprises through knowledge management: a study of COMAC's "dual screen innovation" from the success of C919's first flight[J]. Tsinghua business review, 2017(5):35-39.)
[4]
郝建苹. 国内外知识管理研究现状综述[J]. 情报杂志,2003(8):17-19.(HAO J P. A review of the current situation of knowledge management research at home and abroad[J]. Journal of intelligence,2003(8):17-19.)
[5]
OpenAI.ChatGPT[EB/OL].[2023-12-23] https://chat.openai.com/.
[6]
Gartner. 5 impactful technologies from the gartner emerging technologies and trends impact radar for 2022[EB/OL].[2023-12-02].https://www.gartner.com/en/articles/5-impactful-technologies-from-the-gartner-emerging-technologies-and-trends-impact-radar-for-2022.
[7]
REUTERS. ChatGPT sets record for fastest-growing user base - analyst note[EB/OL].[ 2023-11-02].https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/.
[8]
HOROWITZ A. How are consumers using generative AI?[EB/OL].[ 2023-12-10].https://a16z.com/how-are-consumers-using-generative-ai/.
[9]
THOPPILAN R, DE FREITAS D, HALL J, et al. Lamda: language models for dialog applications[J]. arXiv preprint,2022,arXiv:2201.08239.
[10]
Google. PaLM 2 Technical Report[EB/OL].[2023-11-16]. https://ai.google/static/documents/palm2techreport.pdf.
[11]
TOUVRON H, LAVRIL T, IZACARD G, et al. Llama: open and efficient foundation language models[J]. arXiv preprint,2023, arXiv:2302.13971.
[12]
TOUVRON H, MARTIN L, STONE K, et al. Llama 2: open foundation and fine-tuned chat models[J]. arXiv preprint, 2023, arXiv:2307.09288.
[13]
OpenAI. GPT-4[EB/OL].[2024-03-12]. https://openai.com/research/gpt-4.
[14]
Google. Gemini[EB/OL].[2024-02-02]. https://gemini.google.com/.
[15]
OpenAI. Creating video from text[EB/OL].[2024-03-15]. https://openai.com/sora/.
[16]
百度. 文心一言[EB/OL].[2024-02-02]. https://yiyan.baidu.com/ .(Baidu. ERNIE Bot[EB/OL].[2024-02-02]. https://yiyan.baidu.com/.)
[17]
中国电信.中国电信星辰AI大模型开源[EB/OL].[2024-01-20]. http://www.chinatelecom.com.cn/news/02/202401/t20240112_79586.html.(China Telecom. China Telecom Star AI Big Model Open Source[EB/OL].[2024-01-20]. http://www.chinatelecom.com.cn/news/02/202401/t20240112_79586.html.)
[18]
PU X, GAO M, WAN X. Summarization is (almost) dead[J]. arXiv preprint, 2023, arXiv:2309.09558.
[19]
ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. New Orleans: IEEE/CVF, 2022:10684-10695.
[20]
OpenAI. Improving image generation with better captions[EB/OL].[2024-03-26]. https://cdn.openai.com/papers/dall-e-3.pdf.
[21]
LIN J, DAI X, XI Y, et al. How can recommender systems benefit from large language models: a survey[J]. arXiv preprint, 2023, arXiv:2306.05817.
[22]
KEIVALYA P, MEHFUZA H. Automating customer service using LangChain: building custom open-source GPT Chatbot for organizations[J]. arXiv preprint, 2023, arXiv:2310.05421v1.
[23]
WANG J, YI X, GUO R, et al. Milvus: a purpose-built vector data management system[C]//Proceedings of the 2021 international conference on management of data. Xi’an: SIGMOD, 2021:2614-2627.
[24]
LEWIS P, PEREZ E, PIKTUS A, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks[J]. arXiv preprint, 2020, arXiv:2005.11401.
[25]
OpenAI. What are embeddings?[EB/OL].[2024-03-16]. https://platform.openai.com/docs/guides/embeddings/what-are-embeddings.
[26]
FlagOpen. FlagEmbedding[EB/OL].[2024-02-02]. https://github.com/FlagOpen/FlagEmbedding.
[27]
TechCrunch. Samsung bans use of generative AI tools like ChatGPT after April internal data leak[EB/OL].[2024-03-11]. https://techcrunch.com/2023/05/02/samsung-bans-use-of-generative-ai-tools-like-chatgpt-after-april-internal-data-leak/.
[28]
中华人民共和国国家互联网信息办公室. 生成式人工智能服务管理暂行办法[EB/OL].[2024-03-20]. http://www.cac.gov.cn/2023-07/13/c_1690898327029107.htm.(CyberSpace Administration of China. Interim measures for the management of generative artificial intelligence services[EB/OL].[2024-03-20]. http://www.cac.gov.cn/2023-07/13/c_1690898327029107.htm.)
[29]
云头条. ChatGPT 或被关闭:销毁数据集[EB/OL].[2023-10-15].https://www.163.com/dy/article/ICF8QUR90511D6RL.html. (Cloud Head Bar. ChatGPT or closed: destroy dataset[EB/OL].[2023-10-15]. https://www.163.com/dy/article/ICF8QUR90511D6RL.html)
[30]
JI Z, LEE N, FRIESKE R, et al. Survey of hallucination in natural language generation[J]. ACM computing surveys, 2023,55(12):1-38.
[31]
ZHANG M R, PRESS O, MERRILL M, et al. How language model hallucinations can snowball[J]. arXiv preprint,2023, arXiv: 2305.13534.
[32]
EVA A M V D,JOHAN B,WILLEM Z,et al. ChatGPT: five priorities for research[J].Nature,2023,614(7947):224-226.
[33]
OpenAI. Openai’s gpt-3 language model: a technical overview[EB/OL].[2023-10-18]. https://lambdalabs. com/blog/demystifying-gpt-3.
[34]
FRANTAR E, ASHKBOOS S, HOEFLER T, et al. Gptq: accurate post-training quantization for generative pre-trained transformers[J]. arXiv preprint, 2022, arXiv:2210.17323.
[35]
LIN J, TANG J, TANG H, et al. AWQ: activation-aware weight quantization for LLM compression and acceleration[J]. arXiv preprint, 2023, arXiv:2306.00978.
[36]
KADDOUR J,HARRIS J, MOZES M, et al. Challenges and applications of large language models[J]. arXiv preprint,2023, arXiv: 2307.10169.
[37]
OpenAI. Prompt engineering[EB/OL].[2024-04-02].https://platform.openai.com/docs/guides/prompt-engineering.

作者贡献说明/Author contributions:

张 宇:确定研究选题,提出研究思路,撰写与修改论文;

王玉梁:修改论文。


PDF(1841 KB)

Accesses

Citation

Detail

段落导航
相关文章

/