用户微表情信息表征研究综述

刘洋, 吴佩, 万芷涵, 石佳玉, 朱立芳

知识管理论坛 ›› 2023, Vol. 8 ›› Issue (3) : 215-227.

PDF(3513 KB)
PDF(3513 KB)
知识管理论坛 ›› 2023, Vol. 8 ›› Issue (3) : 215-227. DOI: 10.13266/j.issn.2095-5472.2023.019
综述述评

用户微表情信息表征研究综述

作者信息 +

A Review of Information Representation of User's Micro-Expressions

Author information +
文章历史 +

摘要

[目的/意义] 分析国内外微表情识别领域研究现状与趋势,为图书馆与情报领域用户微表情信息表征的研究提供参考。[方法/过程] 基于文献计量的研究方法揭示近10年微表情识别领域的研究动态,分析微表情识别和信息表征的融合趋势、技术基础与困难挑战。[结果/结论] 微表情数据集、微表情识别技术是当前研究热点;技术方法、安全伦理和数据库数量是当今发展的主要挑战;信息传递、信息反馈是图书馆和情报领域未来可发展的新兴研究领域,元宇宙、隐私问题和技术驱动等领域是未来的微表情识别技术的应用趋势。

Abstract

[Purpose/Significance] To analyze the current status and trends of research in the field of micro-expression recognition at home and abroad, and to provide a reference for the research on micro-expression information representation of users in the field of library and intelligence. [Method/Process] The bibliometric-based research method revealed the research dynamics in the field of micro-expression recognition in the last decade, and analyzed the convergence trends, technical basis and difficult challenges of micro-expression recognition and information representation. [Result/Conclusion] Micro-expression datasets and micro-expression recognition technologies are current research hotspots; technical approaches, security ethics and database volume are major challenges for today's development; information transmission and information feedback are emerging research areas that can be developed in libraries and intelligence in the future, and areas such as meta-universe, privacy issues and technology-driven are future trends in the application of micro-expression recognition technologies.

关键词

微表情识别 / 信息表征 / 信息传递 / 信息反馈 / 文献计量

Key words

micro-expression recognition / information representation / information transmission / information feedback / bibliometrics

引用本文

导出引用
刘洋 , 吴佩 , 万芷涵 , . 用户微表情信息表征研究综述[J]. 知识管理论坛. 2023, 8(3): 215-227 https://doi.org/10.13266/j.issn.2095-5472.2023.019
Liu Yang , Wu Pei , Wan Zhihan , et al. A Review of Information Representation of User's Micro-Expressions[J]. Knowledge Management Forum. 2023, 8(3): 215-227 https://doi.org/10.13266/j.issn.2095-5472.2023.019
中图分类号: C93   

参考文献

[1]
吴奇,申寻兵,傅小兰.微表情研究及其应用[J].心理科学进展,2010,18(9):1359-1368.
[2]
Ekman P, Friesen W V. Detecting deception from the body or face[J]. Journal of personality and social psychology, 1974, 29(3):288-298.
[3]
HOUSE C, MEYER R. Preprocessing and descriptor features for facial micro-expression recognition [EB/OL].[2022-07-30].https://web.stanford.edu/classlee368/Project_Spring_1415/Reports/House_Meyer.pdf.
[4]
陈子健,朱晓亮.基于面部表情的学习者情绪自动识别研究——适切性、现状、现存问题和提升路径[J].远程教育杂志,2019,37(4):64-72.
[5]
Zeng Z h, Pantic M, Roisman G I, et al. A survey of affect recognition methods: audio, visual, and spontaneous expression[J].IEEE trans on pattern analysis and machine intelligence,2009,31(1):39-58.
[6]
ZHANG J, DONALD A N. Representations in distributed cognitive tasks[J]. Cognitive science,1994,18(1):87-122.
[7]
阳长征.危机事件中网络信息表征对用户持续分享意愿影响研究[J].图书情报工作,2019,63(21):105-116.
[8]
石程旭.监狱民警应用微表情分析的思考[J].法制博览,2022(5):27-29.
[9]
崔小洛.基于微表情追踪的课堂教学效果即时反馈系统设计[J].无线互联科技,2022,19(4):52-54.
[10]
李婧婷,东子朝,刘烨,等.基于人类注意机制的微表情检测方法[J].心理科学进展,2022,30(10):2143-2153.
[11]
Frank M G, Herbasz M, Sinuk K, et al. I see how you feel: training laypeople and professionals to recognize fleeting emotion[C]// The annual meeting of the International Communication Association. New York: International Communication Association, 2009: 1-35.
[12]
Pfister T, Li X, Zhao G, et al. Recognising spontaneous facial micro-expressions[C]//2011 international conference on computer vision. Piscataway: IEEE, 2011: 1449-1456.
[13]
徐峰,张军平.人脸微表情识别综述[J].自动化学报,2017,43(3):333-348.
[14]
Pfister T, Li X B, Zhao G Y, et al. Recognising spontaneous facial micro-expressions[C]//Proceedings of the 2011 IEEE international conference on computer vision. Piscataway: IEEE,2011:1449-1456.
[15]
Li X B, Pfister T, Huang X H, et al. Aspontaneous micro-expression database: inducement, collection and baseline[C]//Proceedings of the 10th IEEE international conference and workshops on automatic face and gesture recognition. Piscataway: IEEE,2013:1-6.
[16]
Yan w J, Wu Q, Liu Y J, et al. CASME database: a dataset of spontaneous micro-expressions collected from neutralized faces[C]//Proceedings of the 10th IEEE international conference and workshops on automatic face and gesture recognition. Piscataway: IEEE, 2013:1-7.
[17]
Yan W J, Li X, Wang S J, et al. CASME II: an improved spontaneous micro-expression database and the baseline evaluation[J]. PloS one, 2014, 9(1): e86041.
[18]
Qu F, Wang S J, Yan W J, et al. CAS (ME)^2: a database for spontaneous macro-expression and micro-expression spotting and recognition[J]. IEEE transactions on affective computing, 2017, 9(4): 424-436.
[19]
Li J, Dong Z, Lu S, et al. CAS (ME)3: a third generation facial spontaneous micro-expression database with depth information and high ecological validity[J]. IEEE transactions on pattern analysis and machine intelligence, 2022,45(3): 2782-2800.
[20]
Yap C H, Kendrick C, Yap M H. SAMM long videos: a spontaneous facial micro-and macro-expressions dataset[C]//2020 15th IEEE international conference on automatic face and gesture recognition. Piscataway: IEEE, 2020: 771-776.
[21]
Ben X,Ren Y, Zhang J, et al. Video-based facial micro-expression analysis: a survey of datasets, features and algorithms[J]. IEEE transactions on pattern analysis and machine intelligence, 2021,44(9): 5826-5846.
[22]
Pfister T, Li X, Zhao G, et al. Recognising spontaneous facial micro-expressions[C]//2011 international conference on computer vision. Piscataway: IEEE, 2011: 1449-1456.
[23]
Polikovsky S, Kameda Y, Ohta Y. Facial micro-expression detection in hi-speed video based on facial action coding system (FACS)[J]. IEICE transactions on information and systems, 2013, 96(1): 81-92.
[24]
Rowley H A, Baluja S, Kanade T. Neural network-based face detection[J] IEEE transactions on pattern analysis and machine intelligence, 1998, 20(1): 23-38.
[25]
Schapire E, Singer Y. Improved boosting algorithms using confidence-rated predictions[J].Machine learning,1999,37(3):297-336.
[26]
COOTES T F, TAYLOR C J, EDWARDS G J. Active appearance models[C]//European conference on computer vision. Berlin: Springer,1998:484-498.
[27]
Wadhwa N, Rubinstein M, Durand F, et al. Phase-based video motion processing[J]. ACM transactions on graphics, 2013, 32(4):1-10.
[28]
姚海燕,李健,邓小昭.网络用户信息行为研究中的隐私问题探讨[J].情报探索,2010(7):14-16.
[29]
周霞,王萍,王美月,等.政府开放数据用户认知影响因素研究——先验图式调节效应[J].情报科学,2022,40(9):159-166.
[30]
蒋福明,曾慧平.人脸识别技术应用中的隐私伦理问题及其消解路径[J].山西高等学校社会科学学报,2020,32(9):19-24.
[31]
李思宁. 基于深度学习的面部微表情识别方法研究[D]. 徐州:中国矿业大学, 2020.
[32]
Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns[J].IEEE transactions on pattern analysis machine intelligence, 2002,24(7): 971-987.
[33]
Zhao G, Pietikainen M. Dynamic texture recognition using local binary patterns with an application to facial expressions[J]. IEEE transactions on pattern analysis and machine intelligence, 2007, 29(6): 915-928.
[34]
Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]//IEEE computer society conference on computer vision & pattern recognition. Piscataway: IEEE, 2005: 886-893.
[35]
Lucas B D, Kanade T. An iterative image registration technique with an application to stereo vision[C]//Proceedings of the 7th international joint conference on artificial intelligence. San Francisco: Morgan Kaufmann Publishers, 1997, 2: 674-679.
[36]
Chaudhry R, Ravichandran A, Hager G, et al. Histograms of oriented optical flow and binet-cauchy kernels on nonlinear dynamical systems for the recognition of human actions[C]//Proceedings of 2009 IEEE conference on computer vision and pattern recognition. Miami: IEEE, 2009: 1932-1939.
[37]
Liu Y J, Zhang J K, Yan W J, et al. A main directional mean optical flow feature for spontaneous micro-expression recognition[J]. IEEE transactions on affective computing, 2015, 7(4): 299-310.
[38]
Lu Z, Luo Z, Zheng H, et al. A delaunay-based temporal coding model for micro-expression recognition [C]//Asian conference on computer vision. Singapore: Springer, 2014: 698-711.
[39]
Takalkar M A, Xu M. Image based facial micro-expression recognition using deep learning on small datasets[C]//2017 international conference on digital image computing: techniques and applications. Piscataway: IEEE, 2017: 1-7.
[40]
钱付兰,李建红,赵姝,等.基于深度混合模型评分推荐[J].南京航空航天大学学报,2019,51(5):592-598.
[41]
刘德志, 梁正友, 孙宇. 结合空间注意力机制与光流特征的微表情识别方法 [J]. 计算机辅助设计与图形学学报, 2021,33(10):1541-1552.
[42]
Khor H Q, See J, Phan R, et al. Enriched long-term recurrent convolutional network for facial micro-expression recognition [C]// IEEE international conference on automatic face & gesture recognition. Piscataway: IEEE, 2018: 667-674.
[43]
YAO L, XIAO X, CAO R, et al. Three stream 3D CNN with SE block for micro-expression recognition[C]//2020 International conference on computer engineering and application. Piscataway: IEEE, 2020:439-443
[44]
李星燃,张立言,姚树婧.结合特征融合和注意力机制的微表情识别方法[J].计算机科学,2022,49(2):4-11.
[45]
LIU Y Y, DAI W, FANG F, et al. Dynamic multi- channel metric network for joint pose-aware and identity-invariant facial expression recognition[J]. Information sciences,2021(578):195-213.
[46]
孔慧芳,钱世超,闫嘉鹏.基于不均衡数据与迁移学习的面部微表情识别[J].合肥工业大学学报(自然科学版),2020,43(7):895-900.
[47]
刘洋,马莉莉,张雯,等.基于跨模态深度学习的旅游评论反讽识别[J].数据分析与知识发现,2022,6(12):23-31.
[48]
阳长征.危机事件中网络信息表征对用户持续分享意愿影响研究[J].图书情报工作,2019,63(21):105-116.
[49]
韩丽,李洋,周子佳,等.课堂环境中基于面部表情的教学效果分析[J].现代远程教育研究,2017(4):97-103,112.
[50]
夏乾馨,付强.应用微表情识别技术实现公安预警模式的探讨[J].中国防伪报道,2021(2):82-85.
[51]
康桐瑞.论微表情分析在我国侦查讯问中的应用[J].上海公安学院学报,2019,29(4):28-33.
[52]
Kang J, CHEN X Y, LIU Q Y, et al. Research on a micro-expression recognition technology based on multimodal fusion[J/OL]. Complexity, 2021[2023-03-02]. https://www.hindawi.com/journals/complexity/2021/5221950/.
[53]
Buhari A M, Ooi C P, Baskaran V M, et al. Invisible emotion magnification algorithm (IEMA) for real-time micro-expression recognition with graph-based features[J]. Multimedia tools and applications, 2022, 81(7): 9151-9176.
[54]
Liu J, Wang H, Feng Y. An end-to-end deep model with discriminative facial features for facial expression recognition[J]. IEEE access, 2021, 9: 12158-12166.
[55]
El Zarif N, Montazeri L, Leduc-Primeau F, et al. Mobile-optimized facial expression recognition techniques[J]. IEEE access, 2021, 9: 101172-101185.
[56]
Zhang G, Lv G, Binsawad M, et al. Dynamic nonlinear expression recognition technology using neural network and attention mechanism[J]. Fractals, 2022, 30(2): 2240097.
[57]
陈子健,朱晓亮.基于面部表情的学习者情绪自动识别研究——适切性、现状、现存问题和提升路径[J].远程教育杂志,2019,37(4):64-72.
[58]
彭小江,乔宇.面部表情分析进展和挑战[J].中国图象图形学报,2020,25(11):2337-2348.
[59]
马艳准. 多民族面部表情理解分析技术研究[D].沈阳: 东北大学,2012.
[60]
张旭东,刘洋.组态视角下元宇宙图书馆用户接受意愿影响因素研究[J].图书馆理论与实践,2023(3):73-85.
[61]
于明,钟元想,王岩.人脸微表情分析方法综述[J].计算机工程,2023,49(2):1-14.
[62]
殷明,张剑心,史爱芹,等.微表情的特征、识别、训练和影响因素[J].心理科学进展,2016,24(11):1723-1736.
[63]
樊振佳,宋正刚,刘鸿彬,等.贫困地区返乡创业人员信息获取不平等表征及其根源分析[J].情报科学,2019,37(10):81-86,113.
[64]
刘汝涵,徐丹.视频放大和深度学习在微表情识别任务上的应用[J].计算机辅助设计与图形学学报,2019,31(9):1535-1541.
[65]
姜婷婷,吴茜,徐亚苹,等.眼动追踪技术在国外信息行为研究中的应用[J].情报学报,2020,39(2):217-230.
[66]
吴冉,任衍具.微表情的启动效应研究[J].应用心理学,2011,17(3):241-248.
[67]
刘缘,庾永波.在安检中加强“微表情”识别的思考——基于入藏公路安检的考察[J].四川警察学院学报,2019,31(1):61-68.
[68]
Shen X, Wu Q, Fu X. Effects of the duration of expressions on the recognition of micro expressions[J]. Journal of Zhejiang University science B, 2012, 13(3): 221-230.
[69]
刘洋,马莉莉,张雯,等.基于跨模态深度学习的旅游评论反讽识别[J].数据分析与知识发现,2022,6(12):23-31.
[70]
谭春辉,陈晓琪,梁远亮,等.隐私泄露事件中社交媒体围观者情感分析[J].情报科学,2023,41(3):8-18.

作者贡献说明:

刘洋:进行研究设计,开展实验,撰写论文;

吴佩:开展实验,撰写论文;

万芷涵:开展实验,撰写论文;

石佳玉:开展实验,撰写论文;

朱立芳:进行研究设计,修改论文。

基金

国家自然科学基金青年项目“突发公共卫生事件公众心理应激信息表征及干预机制研究”(72204190)
教育部人文社科项目青年项目“基于社交机器人的突发公共卫生事件公众心理应激干预研究”(22YJCZH114)
中国博士后面上基金“突发公共卫生事件公众心理应激信息表征及干预机制研究”(2022M722476)

编辑: 刘远颖
PDF(3513 KB)

Accesses

Citation

Detail

段落导航
相关文章

/