网络舆情受众失范行为靶向引导的技术框架构建

黄微, 刘熠, 郭苏琳

知识管理论坛 ›› 2020, Vol. 5 ›› Issue (3) : 159-174.

PDF(5778 KB)
PDF(5778 KB)
知识管理论坛 ›› 2020, Vol. 5 ›› Issue (3) : 159-174. DOI: 10.13266/j.issn.2095-5472.2020.015
专稿

网络舆情受众失范行为靶向引导的技术框架构建

作者信息 +

Technology Framework Model of Target Guidance of Anomie Behavior of Network Public Opinion Audience

Author information +
文章历史 +

摘要

[目的/意义]网络舆情受众的失范行为是舆情出现剧烈变化的重要因素。本文重点研究失范行为靶向引导技术框架的构建,为失范行为实施引导提供技术手段。[方法/过程]在网络舆情受众失范行为靶向引导分析的基础上,建立框架模型,并对框架模型的各个模块进行具体描述;梳理各模块功能实现所需要的核心技术和进一步研究的思路,并以微博舆情为例对框架进行了验证。[结果/结论]靶向引导是理论与应用相结合的方法,网络舆情受众失范行为的靶向引导技术框架模型,能够从技术层面解决目前引导策略过于宏观失之具体的缺陷,增强了靶向引导的可操作性。

Abstract

[Purpose / significance] The anomie behavior of the audience is the crucial factor of drastic changes in public opinion. This paper aims to construct the technical framework of targeted guidance of anomie behavior, and guide the anomie behavior from the technical methods. [Method / process] This paper started with the analysis of the target guidance of the anomie behavior of the Internet public opinion audience. Then established the framework model and described each module of the framework model in detail. In addition, this paper organized the core technologies according to each module of the framework, and put forward the further research ideas. Finally, this paper verified the framework by taking microblog public opinion as an example. [Result / conclusion] Targeted guidance is a method combining theory and application. The technology framework model of target guidance for the anomie behavior of Internet public opinion audience can solve the specific defects of current guidance strategy from the technical level, and enhance the operability of targeted guidance.

关键词

网络舆情 / 失范行为 / 靶向引导

Key words

network public opinion / anomie behavior / target guidance

引用本文

导出引用
黄微 , 刘熠 , 郭苏琳. 网络舆情受众失范行为靶向引导的技术框架构建[J]. 知识管理论坛. 2020, 5(3): 159-174 https://doi.org/10.13266/j.issn.2095-5472.2020.015
Huang Wei , Liu Yi , Guo Sulin. Technology Framework Model of Target Guidance of Anomie Behavior of Network Public Opinion Audience[J]. Knowledge Management Forum. 2020, 5(3): 159-174 https://doi.org/10.13266/j.issn.2095-5472.2020.015
中图分类号: G206   

参考文献

[1]
曾润喜,王国华,徐晓林.高校网络舆情的控制与引导[J].情报理论与实践,2009,32(11):79-82.
[2]
吴红.高校图书馆如何利用流行文化积极元素引导大学生践行社会主义核心价值观[J].图书情报工作,2015,59(S1):143-146.
[3]
XIA W .Occupy media highland, lead the consciousness development of college students[J].Canadian social science,2015,11(2):86-93.
[4]
郑磊,任雅丽.中国政府机构微博现状研究[J].图书情报工作,2012,56(3):13-17.
[5]
罗潇潇,何跃,熊涛.突发公共事件中权威信息对微博内容的影响研究——以柳州镉污染事件为例[J].图书情报工作,2012,56(11):123-127.
[6]
王晰巍,邢云菲,王楠阿雪,等.新媒体环境下突发事件网络舆情信息传播及实证研究——以新浪微博“南海仲裁案”话题为例[J].情报理论与实践,2017,40(9):1-7.
[7]
赵晓航.基于情感分析与主题分析的“后微博”时代突发事件政府信息公开研究——以新浪微博“天津爆炸”话题为例[J].图书情报工作,2016,60(20):104-111.
[8]
刘永,许烨婧.面向情境的情报服务理论问题研究[J].情报理论与实践,2013,36(11):1-4,19.
[9]
刘英杰,黄微,闫璐.基于A–V–P的网络舆情信息情感维度空间的模型构建[J].情报资料工作,2017(6):12-18.
[10]
曾胜泉.网络舆情应对技巧[M].广州:广东人民出版社,2019:100-241.
[11]
鱼震海.基于新媒体环境下网络媒体失范行为的分析研究[J].现代情报,2013,33(8):172-174,177.
[12]
谢晖.我国网络社会失范行为的法律规制——以网络舆情为视角[J].法制博览,2019(31):37-39.
[13]
杨祺. 微博意见领袖的行为失范及对策研究[D].长沙:湖南大学,2016.
[14]
黄微,许烨婧,刘熠.大数据环境下多媒体网络舆情并发获取的数据驱动机理研究[J].情报理论与实践,2019,42(6):42-48,16.
[15]
黄微,刘熠,许烨婧,等.网络舆情推文的热度测度模型构建[J].图书情报工作,2019,63(20):17-25.
[16]
MIKOLOV T,CHEN K,CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL].[2018-06-17].https://arxiv.org/pdf/1301.3781v3.pdf.
[17]
YAN S,SHUMING S,JING L, et al. Directional skip-gram: explicitly distinguishing left and right context for word embeddings[C]//The 2018 Conference of the North American Chapter of the Association for Computational Linguistics , New Orleans, USA: Human Language Technologies, Volume 2, 2018:175-180.
[18]
YANG X,XU S,WU H, et al. Sentiment analysis of Weibo comment texts based on extended vocabulary and convolutional neural network[C]// 2018 international conference on identification, information and knowledge in the internet of things, Beijing, China: Procedia Computer Science, 2018:361-368.
[19]
SHRIVASTAVA K, KUMAR S, JAIN D K. An effective approach for emotion detection in multimedia text data using sequence based convolutional neural network[J]. Multimedia Tools and Applications, (2019)78:29607–29639.
[20]
黄微,刘熠,孙悦.多媒体网络舆情语义识别的关键技术分析[J].情报理论与实践,2019,42(1):134-140.
[21]
黄微,赵江元,许烨婧.多媒体网络舆情知识库群互操作要素及机理研究[J].图书情报工作,2019,63(20):43-50.

作者贡献说明:

黄 微:负责论文框架设计与内容指导;

刘 熠:负责论文撰写与模型搭建;

郭苏琳:负责论文修改与校对。

基金

国家社会科学基金重大项目“大数据驱动的社交网络舆情主题图谱构建及调控策略研究”(18ZDA310)

PDF(5778 KB)

Accesses

Citation

Detail

段落导航
相关文章

/