基于区块链与分布式存储的数字资源保存模型构建研究

黄成立

知识管理论坛 ›› 2025, Vol. 10 ›› Issue (5) : 415-428.

知识管理论坛 ›› 2025, Vol. 10 ›› Issue (5) : 415-428. DOI: 10.13266/j.issn.2095-5472.2025.027  CSTR: 32306.14.CN11-6036.2025.027

基于区块链与分布式存储的数字资源保存模型构建研究

作者信息 +

Research on the Construction of Digital Resource Preservation Model Based on Blockchain and Distributed Storage

Author information +
文章历史 +

摘要

[目的/意义] 针对传统数字资源保存方法存在的单点故障、隐私泄露及保存能力不足等问题,提出基于区块链与分布式存储的融合模型,以解决数据易篡改、权限管理低效和跨机构协作信任缺失等核心挑战。 [方法/过程] 设计分层架构模型,结合区块链存证元数据和IPFS分块存储文件,利用智能合约实现资源上传、权限控制与数据修复的自动化;通过AES加密保障隐私安全,并基于哈希冲突概率计算(4.26×10-27)和容灾能力量化(文件年可恢复率99.99%)验证模型可靠性。 [结果/结论] 模型在数据不可篡改性、隐私保护(AES-256破解需3.68×1051年)和容灾能力上显著优于其他方法,适用于数字档案、医疗数据等高安全性场景。提出分层存储与数据去重压缩等策略,优化系统性能与成本。模块化设计降低开发复杂度,托管服务集成提升部署效率。研究表明,区块链与IPFS协同机制可以为数字资源保存提供可靠路径,未来需进一步平衡性能与成本以支持规模化应用。

Abstract

[Purpose/Significance] Addressing issues such as single point of failure, privacy leakage, and insufficient ability of traditional digital resource preservation methods, an integrated model based on blockchain and distributed storage is proposed to solve the core challenges such as easy data tampering, inefficient permission management and a lack of trust in cross-institutional collaboration. [Method/Process] This study designed a hierarchical architecture model that integrates blockchain depositary metadata and IPFS chunked storage files. And smart contracts were utilized to automate processes including resource upload, permission control and data recovery. Data privacy was safeguarded through AES encryption. The model's reliability was rigorously verified based on a hash collision probability calculation (4.26×10-27) and a quantified disaster tolerance capacity quantification (annual file recoverability rate of 99.99%). [Result/Conclusion] The model significantly outperforms other methods in data immutability, privacy protection (it takes 3.68×1051 years to crack AES-256) and disaster tolerance capacity. And it is suitable for high-security scenarios such as digital archives and medical data management. The study also proposes strategies such as hierarchical storage, data deduplication and compression to optimize system performance and reduce cost. A modular design reduces development complexity, while the integration of managed services enhances deployment efficiency. This research shows that the collaborative mechanism of blockchain and IPFS provides a reliable path for digital resources preservation. In the future, it is necessary to further balance performance and cost to support large-scale applications.

关键词

区块链 / 分布式存储 / 数字资源保存 / 数据隐私保护 / 智能合约

Key words

blockchain / distributed storage / digital resource preservation / data privacy protection / smart contracts

引用本文

导出引用
黄成立. 基于区块链与分布式存储的数字资源保存模型构建研究[J]. 知识管理论坛. 2025, 10(5): 415-428 https://doi.org/10.13266/j.issn.2095-5472.2025.027
Huang Chengli. Research on the Construction of Digital Resource Preservation Model Based on Blockchain and Distributed Storage[J]. Knowledge Management Forum. 2025, 10(5): 415-428 https://doi.org/10.13266/j.issn.2095-5472.2025.027
中图分类号: TP311.13   

参考文献

[1]
闫亚飞, 贾苹, 杨雨寒, 等.国家科技创新机构数字科技资源长期保存需求调查与研究[J]. 图书情报工作, 2024, 68 (13): 99-109.
YAN Y F, JIA P, YANG Y H, et al. Survey and research on long-term preservation needs of digital science and technology resources for science, Technology and innovation institutions[J]. Library and information service, 2024, 68(13): 99-109.
[2]
LOPES M A. Drivers e facilitadores para implantação das tecnologias da indústria 4.0 nos sistemas de medição de desempenho: uma revisão sistemática[J]. Brazilian journal of e production engineering, 2024, 10(3): 296-318.
[3]
贾利凯.基于安全多方计算的区块链数据隐私保护方案研究 [D]. 北京: 北京邮电大学, 2024.
JIA L K. Blockchain data privacy protection research based on secure multi-party computation[D]. Beijing: Beijing University of Posts and Telecommunications, 2024.
[4]
罗宛清.可信电子文件长期保存策略研究 [D]. 南昌: 南昌大学, 2023.
LUO W Q. Study on long-term preservation strategy of trusted electronic records[D]. Nangchang: Nangchang University, 2023.
[5]
范伟, 李海波, 张珠君.区块链数字取证:技术及架构研究 [J]. 通信学报, 2024, 45 (12): 125-141.
FAN W, LI H B, ZHANG Z J. Blockchain digital forensics: technology and architecture[J]. Journal on communications, 2024, 45 (12):125-141
[6]
李贝.基于区块链的文物数字资源共享方案的设计与实现 [D]. 西安: 西北大学, 2022.
LI B. Design and implementation of sharing scheme for digital resources of cultural relics based on blockchain[D]. Xi’an: Northwest University, 2022.
[7]
祁嘉奇.基于智能合约和 IPFS 的知识资源产权保护方案研究 [D]. 西安: 西安理工大学, 2024.
QI J Q. Research on intellectual resource property rights protection scheme based by smart contracts and IPFS[D]. Xi'an:Xi'an University of Technology, 2024.
[8]
WANG Y, WANG H, CAO Y. Comprehensive review of storage optimization techniques in blockchain systems[J]. Applied sciences, 2025, 15(1): 243.
[9]
EREN H, KARADUMAN Ö, GENÇOĞLU M T. Security challenges and performance trade-offs in on-chain and off-chain blockchain storage: a comprehensive review[J]. Applied sciences, 2025, 15(6): 3225.
[10]
ALDMOUR M, ALDMOUR R, AL-ZOUBI A Y, et al. Optimizing off-chain storage in blockchain of things systems: implementing dockerized ipfs for enhanced efficiency[J]. International journal of online and biomedical engineering, 2025, 21(1): 118-131.
[11]
XU M, ZHANG J, GUO H, et al. FileDES: a secure, scalable and succinct decentralized encrypted storage network[EB/OL]. [2025-09-03].
[12]
RUNDE Y, ZHUOWEN L, ZHE C, et al. Digital rights management system of media convergence center based on Ethereum and IPFS[J]. IEICE Transactions on information and systems, 2023, E106.D(8): 1275 - 1282.
[13]
YUANLONG C, JUNJIE L, KAILIN C, et al. Blockchain meets generative behavior steganography: a novel covert communication framework for secure IoT edge computing[J]. Chinese journal of electronics, 2024, 33(4): 886 - 898.
[14]
宋歌笙, 蔡丹丹, 蔡文杰. Web 3.0 环境下去中心化存储的数字资源长期保存[J]. 图书馆建设, 2023 (4): 29-35.
SONG G S, CAI D D, CAI W J. Long-term preservation of digital resources for decentralized storage under the Web 3.0[J]. Library development, 2023(4): 29-35.
[15]
LANA L, GAO Y, SHI R, et al. LRChain: data protection and sharing method of learning archives based on consortium blockchain[J]. The journal of China universities of posts and telecommunications, 2024, 31(4): 28-42.
[16]
FLORIAN M, NORBERT P, CHRISTIAN R, et al. Analysis of step -reduced SHA - 256[J]. Journal of cryptographic engineering, 2006, 1(2): 126 - 143.
[17]
COINANK. BTC全网算力-链上数据[EB/OL]. [2025-09-03].
COINANK. BTC total network computing power - on-chain data[EB/OL]. [2025-09-03].
[18]
HISTORY.BTC126.COM. 比特币全网算力查询:比特币全网算力历史数据、变化曲线[EB/OL]. [2025-09-03].
HISTORY.BTC126.COM. Bitcoin network hash rate query: historical data and change curve of bitcoin network hash rate[EB/OL]. [2025-09-03].
[19]
CHEUNG Y K, LEONARDOS S, PILIOURAS G, et al. From griefing to stability in blockchain mining economies [EB/OL]. [2025-09-04].
[20]
ZHANG M, GE W, TANG R, et al. Hard disk failure prediction based on blending ensemble Learning[J]. Applied sciences, 2023, 13(5): 3288.
[21]
FERREIRA K B. Keeping checkpoint/restart viable for exascale systems[D]. Albuquerque: University Of New Mexico, 2011.

Accesses

Citation

Detail

段落导航
相关文章

/