技术预测:国内外研究热点与前沿分析

桂倩, 仲伟冰, 何玄, 张楚逸

知识管理论坛 ›› 2025, Vol. 10 ›› Issue (5) : 375-396.

知识管理论坛 ›› 2025, Vol. 10 ›› Issue (5) : 375-396. DOI: 10.13266/j.issn.2095-5472.2025.025  CSTR: 32306.14.CN11-6036.2025.025
研究论文

技术预测:国内外研究热点与前沿分析

作者信息 +

Technology Forecasting: Analysis of Domestic and International Research Hotspots and Frontiers

Author information +
文章历史 +

摘要

【目的/意义】 技术预测是与未来技术发展趋势和技术创新相关的研究,识别当前技术预测领域的研究热点与前沿趋势,可以为企业和组织的技术创新提供指引,帮助其把握机遇,规避风险。 【方法/过程】 以2001至2024年Web of Science和中国知网(CNKI)收录的技术预测相关文献为数据来源,综合运用知识图谱工具VOSviewer和Citespace对文献特征、研究热点和前沿趋势进行分析。 【结果/结论】 研究表明:①国内外技术预测领域相关文献数量持续增长,核心期刊分布于情报学、管理学等学科领域。②国内作者群多以机构内合作为主,存在以师徒关系为基础的跨机构合作关系;国外跨机构合作活动较多,多以联合培养学者、高校访问学者为中介开展学术研究合作,中国学者成为国际技术预测领域的重要力量。③研究热点方面,国内聚焦于新兴技术与颠覆性技术研究、技术机会研究、技术预测方法研究;国外关注技术发展趋势研究、新兴技术评估与预测研究、技术融合与技术情报研究、技术机会发现与分析研究。④研究前沿方面,颠覆性技术和新兴技术的识别与预测、技术融合与技术创新研究、技术机会识别与发现方法的优化是国内技术预测领域的研究前沿;国外技术预测领域的研究前沿主要聚焦于技术预测方法的改进、技术机会的发现与分析。

Abstract

[Purpose/Significance] Technology forecasting is a field of research related to future technology development trends and technological innovation. This paper aims to identify the current research hotspots and frontiers in the field of technology forecasting, to provide guidance for the technological innovation of enterprises and organizations, helping them seize opportunities and avoid risks. [Method/Process] Technology forecasting literature from WoS and CNKI (2001—2024) was analyzed using VOSviewer and CiteSpace to identify literature characteristics, hotspots, and frontiers. [Result/Conclusion] The result shows that: ①The volume of articles published in the field of technology forecasting has grown steadily at domestic and international, and the core journals are distributed in the fields of information science, management and other disciplines. ②A stable core authors group has formed in the field of technology forecasting at home and abroad. In China, collaboration remains predominantly intra-institutional, and there are cross-institutional, with cross-institutional ties often stemming from mentor-apprentice relationships. Internationally, cross-institutional collaboration is more prevalent, frequently facilitated by jointly-trained scholars and visiting academics who serve as bridges for research partnerships. Notably, Chinese scholars have emerged as key contributors to international technology forecasting research. ③Regarding research hotspots, domestic research focuses on the research of emerging and disruptive technologies, technology opportunities, and technology forecasting methods. Foreign countries focus on technology development trend research, emerging technology assessment and forecasting research, technology convergence and technology intelligence research, technology opportunity discovery and analysis research. ④In terms of research frontiers, identification and prediction of disruptive and emerging technologies, research on technology convergence and technological innovation, and optimization of technology opportunity identification and discovery methods are the research frontiers in the field of domestic technology forecasting. The research frontiers in the field of foreign technology forecasting mainly focus on the improvement of technology forecasting methods and the discovery and analysis of technology opportunities.

关键词

技术预测 / 文献计量 / 研究热点 / 前沿趋势 / VOSviewer / Citespace

Key words

technology forecasting / bibliometrics / research hotspots / research frontiers / VOSviewer / Citespace

引用本文

导出引用
桂倩 , 仲伟冰 , 何玄 , . 技术预测:国内外研究热点与前沿分析[J]. 知识管理论坛. 2025, 10(5): 375-396 https://doi.org/10.13266/j.issn.2095-5472.2025.025
Gui Qian , Zhong Weibing , Hareesh Govindarajan Usharani , et al. Technology Forecasting: Analysis of Domestic and International Research Hotspots and Frontiers[J]. Knowledge Management Forum. 2025, 10(5): 375-396 https://doi.org/10.13266/j.issn.2095-5472.2025.025
中图分类号: F204   

参考文献

[1]
张显峰, 陈磊, 高博, 创新驱动中国巨轮——党的十八大以来科技改革发展进行时[N]. 科技日报, 2013-11-15(1).
ZHANG X F, CHEN L, GAO B. Innovation drives China's giant ship forward: scientific and technological reform and development since the 18th National Congress of the Communist Party of China[N]. Science and technology daily, 2013-11-15(1).
[2]
张显峰.凝聚创新力量, 托举中华梦想——以习近平为总书记的党中央十八大以来推进创新驱动发展纪实[N]. 科技日报, 2014-01-13(1).
ZHANG X F. Uniting innovative forces to realize the Chinese Dream—a chronicle of the Central Committee of the Communist Party of China led by General Secretary Xi Jinping in promoting innovation-driven development since the 18th National Congress[N]. Science and technology daily, 2014-01-131
[3]
JUN S, PARK S S, JANG D S. Technology forecasting using matrix map and patent clustering[J]. Industrial management & data systems, 2012, 112(5): 786-807.
[4]
HALEEM A, MANNAN B, LUTHRA S, et al. Technology forecasting (TF) and technology assessment (TA) methodologies: a conceptual review[J]. Benchmarking: an international journal, 2019, 26(1): 48-72.
[5]
JIANG M, YANG S, GAO Q. Multidimensional indicators to identify emerging technologies: perspective of technological knowledge flow[J]. Journal of informetrics, 2024, 18(1): 101483.
[6]
BALCÁZAR-ZUMAETA C R, CASTRO-ALAYO E M, MUÑOZ-ASTECKER L D, et al. Food technology forecasting: a based bibliometric update in functional chocolates[J]. Heliyon, 2023, 9(9):e19578.
[7]
XU H, WINNINK J, YUE Z, et al. Multidimensional scientometric indicators for the detection of emerging research topics[J]. Technological forecasting and social change, 2021, 163: 120490.
[8]
CALLEJA-SANZ G, OLIVELLA-NADAL J, SOLÉ-PARELLADA F. Technology forecasting: recent trends and new methods[J]. Research methodology in management and industrial engineering, 2020: 45-69. [EB/OL]. [2025-08-26].
[9]
汪雪锋, 张硕, 韩晓彤, 等. 技术预测研究现状与未来展望[J]. 农业图书情报学报, 2019, 31(6): 4-11.
WANG X F, ZHANG S, HAN X T, et al. Technology forecasting: status and trends[J]. Journal of library and information science in agriculture, 2019, 31(6): 4-11.
[10]
张硕, 汪雪锋, 乔亚丽, 等. 技术预测研究现状、趋势及未来思考:数据分析视角[J]. 图书情报工作, 2022, 66(10): 4-18.
ZHANG S, WANG X F, QIAN Y L, et al. Research status, trends and future thinking of technology forecasting: from the perspective of data analytics[J]. Library and information service, 2022, 66(10): 4-18.
[11]
王翠波, 熊坤, 刘文俊. 基于CiteSpace的技术预测研究的可视化分析[J]. 技术经济, 2020, 39(6): 147-154.
WANG C B, XIONG K, LIU W J. Visual analysis about the research of technology forecasting based on CiteSpace[J]. Technology economics, 2020, 39(6): 147-154.
[12]
陈忠海, 董一超.统计分析法与文献计量法在档案学研究中的应用分析[J]. 北京档案, 2017(3):12-15.
CHEN Z H, DONG Y C. Application analysis of statistical analysis and bibliometrics in archival research[J]. Beijing archives, 2017(3): 12-15.
[13]
陈悦, 刘则渊.悄然兴起的科学知识图谱[J]. 科学学研究, 2005, 23(2):149-154.
CHEN Y, LIU Z Y. The rise of mapping knowledge domain[J]. Studies in science of science, 2005, 23(2): 149-154.
[14]
王晓红, 任晓菲.基于CSSCI的我国隐性知识研究的文献计量分析[J]. 管理学报, 2018, 15(12):1854-1861.
WANG X H, REN X F. A Bibliometric analysis of tacit knowledge researches based on CSSCI data[J]. Chinese journal of management, 2018, 15(12): 1854-1861.
[15]
宋玲玲, 郭晶晶.科学知识图谱视角下国内外数字人文领域研究分析 [J]. 图书馆杂志, 2020, 39(7): 26-36.
SONG L L, GUO J J. Comparative analysis of digital humanities research at home and abroad in view of scientific knowledge map[J]. Library journal, 2020, 39(7): 26-36.
[16]
苏娜平, 谭宗颖.技术机会分析方法研究综述与展望[J]. 情报理论与实践, 2020, 43(11):179-186.
SU N P, TAN Z Y. Review and vision for the future of the research on technology opportunity analysis methods, 2020, 43(11): 179-186.
[17]
孔德婧, 董放, 陈子婧, 等. 离群专利视角下的新兴技术预测——基于BERT模型和深度神经网络[J]. 图书情报工作, 2021, 65(17): 131-141.
KONG D J, DONG F, CHEN Z J, et al. Prediction of emerging technologies from the perspective of outlier patents——based on Bert model and deep neural Networks[J]. Library and information service, 2021, 65(17): 131-141.
[18]
任佳妮, 张薇, 杨阳, 等.“人工智能+医疗”新兴技术识别研究——以医疗机器人为例[J]. 情报杂志, 2021, 40(12):45-50.
REN J N, ZHANG W, YANG Y, et al. Research on identification of emerging technologies of "artificial intelligence + medical" —as the case of medical robot[J]. Journal of intelligence, 2021, 40(12): 45-50.
[19]
克里斯坦森.颠覆性创新[M]. 崔传刚, 译.北京:中国出版集团, 2019.
CHRISTENSEN C M. Disruptive innovation[M]. CUI C G, trans. Beijing: China Publishing Group, 2019.
[20]
王康, 陈悦. 基于异质性专利的颠覆性技术早期识别研究 [J]. 科学学研究, 2023, 41(8): 1364-137.
WANG K, CHEN Y. Research on early identification of disruptive technologies based on heterogeneous patents[J]. Studies in science of science, 2023, 41(8): 1364-1375.
[21]
侯广辉, 廖桂铭, 王刚.基于突变级数的颠覆性技术识别模型构建及实证研究[J]. 情报杂志, 2021, 40(10):7-14.
HOU G H, LIAO G M, WANG G. Construction and empirical study of disruptive technology identification model based on mutation series model[J]. Journal of intelligence, 2021, 40(10): 7-14.
[22]
PORTER A L, Detampel M J. Technology opportunities analysis[J]. Technological forecasting and social change, 1995, 49(3):237-255.
[23]
桂美增, 许学国.基于深度学习的技术机会预测研究——以新能源汽车为例[J]. 图书情报工作, 2021, 65(19):130-141.
GUI M Z, XU X G. Approach to technology opportunity prediction based on deep learning: taking the case of new energy vehicles[J]. Library and information service, 2021, 65(19): 130-141.
[24]
周钟, 班燚.基于GTM逆向映射和SD建模的潜在技术机会识别与评价[J]. 情报理论与实践, 2023, 46(10):107-114, 95.
ZHOU Z, BAN Y. Identification and evaluation of potential technical opportunities based on GTM reverse mapping and SD modeling[J]. Information studies: theory & application, 2023, 46(10): 107-114, 95.
[25]
周潇, 许银彪, 史益.基于深度学习与语义挖掘的技术创新组合识别与追踪[J]. 图书情报工作, 2022, 66(10):33-44.
ZHOU X, XU Y B, SHI Y. Identification and tracking of technology innovation combinations based on deep learning and semantic mining[J]. Library and information service, 2022, 66(10): 33-44.
[26]
王坤, 王京安, 汤月, 等.基于专利和科技论文的技术机会识别研究——以金属3D打印技术为例[J]. 科技管理研究, 2018, 38(7):73-79.
WANG K, WANG J A, TANG Y, et al. Research on technology opportunity identification based on patent and scientific papers: an case of metal 3D printing[J]. Science and technology management research, 2018, 38(7): 73-79.
[27]
李乾瑞, 郭俊芳, 朱东华.新兴技术创新机会识别方法研究[J]. 中国软科学, 2018, (11):138-147.
LI Q R, GUO J F, ZHU D H. Identification of technology innovation opportunity for emerging technology[J]. China soft science, 2018(11): 138-147.
[28]
冯立杰, 周炜, 王金凤, 等.基于SAO语义分析的多维技术演化路径与技术创新机会识别研究[J]. 情报学报, 2022, 41(11):1149-1160.
FENG L J, ZHOU W, WANG J F, et al. Examining multi-dimensional technology evolution path and technology innovation opportunity identification based on SAO semantic analysis[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(11): 1149-1160.
[29]
李姝影, 胡正银, 隗玲, 等.大数据视角下技术机会分析研究综述[J]. 科技管理研究, 2023, 43(18):25-35.
LI S Y, HU Z Y, KUI L, et al. A literature review of technology opportunity analysis from the perspective of big data[J]. Science and technology management research, 2023, 43(18): 25-35.
[30]
翟东升, 郭程, 张杰, 等.采用异常检测的技术机会识别方法研究[J]. 现代图书情报技术, 2016, (10):81-90.
ZHAI D S, GUO C, ZHANG J, et al. Identifying technology opportunities with anomaly detection technique[J]. Modern library and information technology, 2016(10): 81-90.
[31]
张硕, 李荣荣.创新过程视角下的技术机会识别:内涵、分类与展望[J]. 科技管理研究, 2024, 44(12):25-35.
ZHANG S, LI R R. Technology opportunity identification from the perspective of innovation process: Connotation, classification, and prospects[J]. Science and technology management research, 2024, 44(12): 25-35.
[32]
伊惠芳, 刘宁, 单晓红, 等.基于需求—技术联合分析的技术机会发现研究[J]. 情报理论与实践, 2024, 47(5):18-29, 47.
YI H F, LIU N, SHAN X H, et al. Research on technology opportunity discovery based on conjoint analysis of requirements-technology[J]. Information studies: theory & application, 2024, 47(5): 18-29, 47.
[33]
冯立杰, 吴敏, 王金凤, 等.面向低端市场颠覆式创新的技术机会识别路径研究[J]. 软科学, 2019, 33(4):91-98.
FENG L J, WU M, WANG J F, et al. Research on the path of technology opportunity identification under the low-end market disruptive innovation[J]. Soft science, 2019, 33(4): 91-98.
[34]
王友发, 张茗源, 罗建强, 等. 专利视角下人工智能领域技术机会分析[J]. 科技进步与对策, 2020, 37(4):19-26.
WANG Y F, ZHANG M Y, LUO J Q, et al. Research on the technological opportunity of artificial intelligence technology based on patent information[J]. Science & technology progress and policy, 2020, 37(4): 19-26.
[35]
翟东升, 刘鹤, 张杰, 等.一种基于链路预测的技术机会挖掘方法[J]. 情报学报, 2016, 35(10):1090-1100.
ZHAI D S, LIU H, ZHANG J, et al. Approach to mining technology opportunity based on link prediction[J]. Journal of the China Society for Scientific and Technical Information, 2016, 35(10): 1090-1100.
[36]
李尚昊, 朝乐门.文本挖掘在中文信息分析中的应用研究述评[J]. 情报科学, 2016, 34(8):153-159.
LI S H, CHAO L M. The review on the application of text mining in Chinese information analysis[J]. Information science, 2016, 34(8): 153-159.
[37]
刘玉琴, 朱东华, 吕琳.基于文本挖掘技术的产品技术成熟度预测[J]. 计算机集成制造系统, 2008(3):506-510, 542.
LIU Y Q, ZHU D H, LYU L. Technology maturity of product forecasting based on text mining[J]. Computer integrated manufacturing systems, 2008(3): 506-510, 542.
[38]
王光宏, 蒋平.数据挖掘综述[J]. 同济大学学报(自然科学版), 2004(2):112-118.
WANG G H, JIANG P. Survey of data mining[J]. Journal of Tongji University (natural science), 2004(2): 112-118.
[39]
王吉武, 黄鲁成, 卢文光.基于文献计量的新兴技术商业化潜力客观评价研究[J]. 现代管理科学, 2008(5):69-70.
WANG J W, HUANG L C, LU W G. Objective evaluation of commercialization potential of emerging technologies based on bibliometrics[J]. Modern management science, 2008(5): 69-70.
[40]
旷景明, 兰小筠.基于专利信息分析的创新技术预测方法综述[J]. 情报杂志, 2014, 33(9):33-39, 50.
KUANG J M, LAN X Y. Review of innovative technology forecasting methods based on patent analysis[J]. Journal of intelligence, 2014, 33(9): 33-39, 50.
[41]
张惠琴, 邵云飞, 张宇翔.基于专利分析的产品技术成熟度预测——以液晶显示技术为例[J]. 技术经济, 2014, 33(10):1-7.
ZHANG H Q, SHAO Y F, ZHANG Y X. Prediction on product technology maturity based on patent analysis: liquid crystal display technology as example[J]. Technology economics, 2014, 33(10): 1-7.
[42]
隗玲, 李姝影, 方曙.技术路线图:方法及其应用综述[J]. 数据分析与知识发现, 2020, 4(9):1-14.
KUI L, LI S Y, FANG S. Methods and applications for technology roadmap[J]. Data analysis and knowledge discovery, 2020, 4(9): 1-14.
[43]
王效岳, 赵冬晓, 白如江.基于专利文本数据挖掘的技术预测方法与实证研究——以纳米技术在能源领域应用为例[J]. 情报理论与实践, 2017, 40(4):106-110.
WANG X Y, ZHAO D X, BAI R J. Technology forecasting method and empirical research based on patent text mining: a case study of nanotechnology applications in energy[J]. Information studies: theory & application, 2017, 40(4): 106-110.
[44]
王金凤, 张珂, 冯立杰, 等.基于专利地图的多级离心泵技术预测[J]. 技术经济, 2017, 36(12):105-110.
WANG J F, ZHANG K, FENG L J, et al. Forecasting on multistage centrifugal pump technology based on patent map[J]. Technology economics, 2017, 36(12): 105-110.
[45]
ZHANG Y, GUO Y, WANG X, et al. A hybrid visualisation model for technology roadmapping: bibliometrics, qualitative methodology and empirical study[J]. Technology analysis & strategic management, 2013, 25(6): 707-724.
[46]
ALTUNTAS S, ABA S. Technology forecasting of unmanned aerial vehicle technologies through hierarchical S-curves[J]. Defence science journal, 2022, 72(1).
[47]
YUSKEVICH I, SMIRNOVA K, VINGERHOEDS R, et al. Model-based approaches for technology planning and roadmapping: technology forecasting and game-theoretic modeling[J]. Technological forecasting and social change, 2021, 168: 120761.
[48]
MI L, HUANG L, HAN Z, et al. Forecasting and evaluating emerging technologies based on supply and demand matching–a case study of China’s gerontechnology[J]. Technology analysis & strategic management, 2022, 34(3): 290-306.
[49]
LIN Y, ZHOU Y. Identification of hydrogen-energy-related emerging technologies based on text mining[J]. Sustainability, 2024, 16(1): 147.
[50]
SONG B, LUAN C, LIANG D. Identification of emerging technology topics (ETTs) using BERT-based model and sematic analysis: a perspective of multiple-field characteristics of patented inventions (MFCOPIs)[J]. Scientometrics, 2023, 128(11): 5883-5904.
[51]
GOVINDARAJAN U H, SINGH D K, GOHEL H A. Forecasting cyber security threats landscape and associated technical trends in telehealth using bidirectional encoder representations from transformers (Bert)[J]. Computers & security, 2023: 103404.
[52]
娄岩, 杨嘉林, 黄鲁成, 等.基于专利共类的技术融合分析框架研究——以老年福祉技术与信息技术的融合为例[J]. 现代情报, 2019, 39(9):41-53.
LOU Y, YANG J L, HUANG L C, et al. Research on technological convergence analysis framework based on patent co-classification——taking the convergence of elderly gerontechnology and information technology as an example[J]. Journal of modern information, 2019, 39(9): 41-53.
[53]
KIM J, LEE S. Forecasting and identifying multi-technology convergence based on patent data: the case of IT and BT industries in 2020[J]. Scientometrics, 2017, 111(1): 47-65.
[54]
KIM B, GAZZOLA G, YANG J, et al. Two-phase edge outlier detection method for technology opportunity discovery[J]. Scientometrics, 2017, 113(1): 1-16.
[55]
ZHU D, PORTER A L. Automated extraction and visualization of information for technological intelligence and forecasting[J]. Technological forecasting and social change, 2002, 69(5): 495-506.
[56]
YOON J, KIM K. TrendPerceptor: a property–function based technology intelligence system for identifying technology trends from patents[J]. Expert systems with applications, 2012, 39(3): 2927-2938.
[57]
TENG F, SUN Y, CHEN F, et al. Technology opportunity discovery of proton exchange membrane fuel cells based on generative topographic mapping[J]. Technological forecasting and social change, 2021, 169: 120859.
[58]
WANG H, FENG L, WANG J, et al. Analyzing critical core components’ technology opportunities based on multilayer networks from a lifecycle perspective: a case study of offshore wind turbine foundation[J]. Journal of cleaner production, 2024, 477: 143850.
[59]
LIU Z, FENG J, UDEN L. Technology opportunity analysis using hierarchical semantic networks and dual link prediction[J]. Technovation, 2023, 128: 102872.
[60]
国家技术前瞻研究组, 程家瑜.关于编制国家技术路线图推进《规划纲要》实施的建议[J]. 中国科技论坛, 2008(5):  3-6.
National Technology Foresight Research Group, CHENG J Y. Suggestions on formulating national technology roadmap to promote the implementation of "Outline of the National Plan"[J]. China science and technology forum, 2008(5): 3-6.
[61]
王坤, 王京安, 陈天明, 等.国内外技术机会研究的脉络、流派与趋势[J]. 南京工业大学学报(社会科学版), 2019, 18(2):98-110, 112.
WANG K, WANG J A, CHEN T M, et al. Context, schools, and trends of technology opportunity research: a comparative study of domestic and international[J]. Journal of Nanjing Tech University (social science edition), 2019, 18(2): 98-110, 112.
[62]
冯立杰, 王亚星, 冯奕程, 等.基于多维技术创新地图的技术预测研究[J]. 情报杂志, 2017, 36(8):58-63, 26.
FENG L J, WANG Y X, FENG Y C, et al. Research on technological forecasting based on multidimensional technology innovation map[J]. Journal of intelligence, 2017, 36(8): 58-63, 26.
[63]
韩晓彤, 刘燕新, 任智军, 等.基于专利挖掘的技术竞争对手研发方向识别[J]. 科学学与科学技术管理, 2018, 39(2):23-32.
HAN X T, LIU Y X, REN Z J, et al. Identification of R&D trends of technical competitors based on patent mining[J]. Science of science and management of S. & T., 2018, 39(2): 23-32.
[64]
陈育新, 卢俊, 韩毅.基于专利文献的颠覆性技术识别研究——以人工智能为例[J]. 情报学报, 2022, 41(11):1124-1133.
CHEN Y X, LU J, HAN Y. Topic prediction for disruptive technologies based on patent literature: a case study of artificial intelligence patents[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(11):1124-1133.
[65]
马亚雪, 王嘉杰, 巴志超, 等.颠覆性技术的后向科学引文知识特征识别研究——以基因工程领域为例[J]. 图书情报工作, 2024, 68(1):116-126.
MA Y X, WANG J J, BA Z C, et al. Research on the knowledge feature identification of disruptive technologies from its backward scientific citations: taking the field of genetic engineering as an example[J]. Library and information service, 2024, 68(1): 116-126.
[66]
李艳, 齐中英, 赵新力.企业技术竞争情报系统概念模型研究[J]. 图书情报工作, 2010, 54(20):57-61.
LI Y, QI Z Y, ZHAO X L. A conceptual model for competitive technical intelligence system in enterprise[J]. Library and information service, 2010, 54(20): 57-61.
[67]
CHEN Y H, CHEN C Y, LEE S C. Technology forecasting of new clean energy: the example of hydrogen energy and fuel cell[J]. African journal of business management, 2010, 4(7): 1372.
[68]
ROGERS E M. A diffusion of innovations[M]. New York: The Free Press, 1995.
[69]
CHU C P, PAN J G. The forecasting of the mobile Internet in Taiwan by diffusion model[J]. Technological forecasting and social change, 2008, 75(7): 1054-1067.
[70]
RODRIGUEZ A, TOSYALI A, KIM B, et al. Patent clustering and outlier ranking methodologies for attributed patent citation networks for technology opportunity discovery[J]. IEEE transactions on engineering management, 2016, 63(4): 426-437.
[71]
YOON J, KIM K. Identifying rapidly evolving technological trends for R&D planning using SAO-based semantic patent networks[J]. Scientometrics, 2011, 88(1): 213-228.
[72]
KIM J, GEUM Y. How to develop data-driven technology roadmaps: the integration of topic modeling and link prediction[J]. Technological forecasting and social change, 2021, 171: 120972.
[73]
PARK M, GEUM Y. Two-stage technology opportunity discovery for firm-level decision making: GCN-based link-prediction approach[J]. Technological forecasting and social change, 2022, 183: 121934.
[74]
LIU Z, FENG J, UDEN L. Technology opportunity analysis using hierarchical semantic networks and dual link prediction[J]. Technovation, 2023, 128: 102872.

作者贡献声明/Author contributions:

桂 倩:撰写与修改论文;

仲伟冰:进行案例研究与修改论文;

何 玄:确定论文选题和写作思路;

张楚逸:整理文献与修改论文。

基金

国家自然科学基金外国学者研究基金资助项目“优化技术栈选择的智能专利分析:区块链企业注册案例演示”(W2433177)

Accesses

Citation

Detail

段落导航
相关文章

/