老年人智慧养老技术持续使用意愿影响因素的元分析

杨静, 马琪

知识管理论坛 ›› 2025, Vol. 10 ›› Issue (2) : 126-140.

PDF(1823 KB)
PDF(1823 KB)
知识管理论坛 ›› 2025, Vol. 10 ›› Issue (2) : 126-140. DOI: 10.13266/j.issn.2095-5472.2025.009  CSTR: 32306.14.CN11-6036.2025.009
研究论文

老年人智慧养老技术持续使用意愿影响因素的元分析

作者信息 +

Influencing Factors of Smart Senior Technology Continuance Intention Based on Meta Analysis

Author information +
文章历史 +

摘要

[目的/意义] 研究为理解和预测老年人的技术持续使用意愿提供有价值的参考依据,有助于指导智慧养老技术设计与改进,并进一步提升用户体验。 [方法/过程] 采用元分析方法,对34篇定量研究文献进行综合分析,着重探讨影响老年人智慧养老技术持续使用意愿的14组关键变量关系,并借助调节效应检验剖析研究结果的异质性来源。 [结果/结论] 研究结果显示,社会影响、便利条件、满意度、感知有用性、感知易用性、信任以及参与度与智慧养老技术持续使用意愿呈显著正相关关系。感知风险与技术焦虑则与持续使用意愿呈负相关关系。样本性别构成、所属国家经济发展水平、技术类别和样本规模可以调节变量间相关性,造成研究结果间的差异。

Abstract

[Purpose/Significance] The study provides valuable references for understanding and predicting older adults’ smart senior technology continuance intention, which can help guide the design and improvement of smart senior technologies and further enhance the user experience. [Method/Process] The meta-analysis method was used to comprehensively analyze 34 quantitative research papers, focusing on the relationship between 14 groups of key variables that affect the intention of the elderly to continue to use smart senior technology, and the source of heterogeneity of the research results was analyzed with the help of the moderating effect test. [Result/Conclusion] The findings showed that social influence, facilitating condition, satisfaction, perceived usefulness, perceived ease of use, trust, and participation were significantly and positively related to smart senior technology continuance intention. In contrast, perceived risk and technology anxiety were negatively associated with smart senior technology continuance intention. In addition, the gender composition of the sample, the level of economic development of the country, the type of technology, and the size of the sample can moderate the correlations between the variables, resulting in differences between the findings.

关键词

智慧养老技术 / 持续使用 / 影响因素 / 元分析

Key words

older adults / smart senior technology / continuance intention / influencing factors / meta-analysis

引用本文

导出引用
杨静 , 马琪. 老年人智慧养老技术持续使用意愿影响因素的元分析[J]. 知识管理论坛. 2025, 10(2): 126-140 https://doi.org/10.13266/j.issn.2095-5472.2025.009
Yang Jing , Ma Qi. Influencing Factors of Smart Senior Technology Continuance Intention Based on Meta Analysis[J]. Knowledge Management Forum. 2025, 10(2): 126-140 https://doi.org/10.13266/j.issn.2095-5472.2025.009
中图分类号: D669.6   

参考文献

1
中华人民共和国国家卫生健康委员会.2023年我国卫生健康事业发展统计公报[EB/OL]. [2025-03-07]. http://www.nhc.gov.cn/guihuaxxs/s3585u/202408/6c037610b3a54f6c8535c515844fae96/files/58c5d1e9876344e5b1aa5aa2b083a51a.pdf.
(The National Health Commission of the People's Republic of China. Statistical Bulletin on the Development of Health and Wellness Services in China in 2023 [EB/OL]. [2025-03-07]. https://www.nhc.gov.cn/guihuaxxs/s3585u/202408/6c037610b3a54f6c8535c515844fae96/files/58c5d1e9876344e5b1aa5aa2b083a51a.pdf.)
2
中华人民共和国中央人民政府.习近平主持召开二十届中央财经委员会第一次会议[EB/OL]. [2025-03-07]. https://www.gov.cn/yaowen/2023-05/05/content_5754275.htm.
(The State Council of the People's Republic of China. Xi Jinping chairs the first meeting of the 20th Central Financial and Economic Affairs Commission [EB/OL]. [2025-03-07]. https://www.gov.cn/yaowen/2023-05/05/content_5754275.htm.)
3
北京市人民政府.北京市民政局等11部门关于印发《关于加强“老老人”服务保障的若干措施》的通知[EB/OL]. [2025-03-07]. https://www.beijing.gov.cn/zhengce/zhengcefagui/202412/t20241204_3956319.html
(Beijing Municipal People's Government. Notice on the Issuance of Several Measures for Strengthening the Service and Guarantee for the Elderly Elderly by the Beijing Municipal Civil Affairs Bureau and Other 11 Departments [EB/OL]. [2025-03-07]. https://www.beijing.gov.cn/zhengce/zhengcefagui/202412/t20241204_3956319.html.)
4
LI J, ZHANG C, LI X, et al. Patients’ emotional bonding with MHealth apps: an attachment perspective on patients’ use of MHealth applications[J]. International journal of information management, 2020, 51: 102054.
5
FAMIYEH S, ASANTE-DARKO D, KWARTENG A. Service quality, customer satisfaction, and loyalty in the banking sector: the moderating role of organizational culture[J]. International journal of quality & reliability management, 2018, 35(8): 1546-1567.
6
ROGERS W A, MITZNER T L, SANFORD J A. A research framework to guide design of technologies for successful aging with disabilities[J]. Gerontechnology, 2014, 13(2): 272.
7
KIM E, HAN S. Determinants of continuance intention to use health apps among users over 60: a test of social cognitive model[J]. International journal of environmental research and public health, 2021, 18(19): 10367.
8
BHATTACHERJEE A. Understanding information systems continuance: an expectation-confirmation model[J]. MIS quarterly, 2001, 25(3): 351-370.
9
LIAO C, PALVIA P, CHEN J L. Information technology adoption behavior life cycle: toward a technology continuance theory (TCT)[J]. International journal of information management, 2009, 29(4): 309-320.
10
RAHI S, KHAN M M, ALGHIZZAWI M. Extension of technology continuance theory (TCT) with task technology fit (TTF) in the context of Internet banking user continuance intention[J]. International journal of quality & reliability management, 2021, 38(4): 986-1004.
11
LIEN C H, CAO Y, ZHOU X. Service quality, satisfaction, stickiness, and usage intentions: an exploratory evaluation in the context of WeChat services[J]. Computers in human behavior, 2017, 68(3): 403-410.
12
KAIUM M A, BAO Y, ALAM M Z, et al. Understanding continuance usage intention of mHealth in a developing country: An empirical investigation[J]. International journal of pharmaceutical and healthcare marketing, 2020, 14(2): 251-272.
13
KE C, LOU V W, TAN K C, et al. Changes in technology acceptance among older people with dementia: the role of social robot engagement[J]. International journal of medical informatics, 2020, 141: 104241.
14
SINHA N, SINGH N. Revisiting expectation confirmation model to measure the effectiveness of multichannel bank services for elderly consumers[J]. International journal of emerging markets, 2023, 18(10): 4457-4480.
15
MENG F, GUO X, PENG Z, et al. Trust and elderly users' continuance intention regarding mobile health services: the contingent role of health and technology anxieties[J]. Information technology & people, 2022, 35(1): 259-280.
16
刘勍勍, 左美云, 刘满成.基于期望确认理论的老年人互联网应用持续使用实证分析[J]. 管理评论, 2012, 24(5):89-101.
(LIU Q Q, ZUO M Y, LIU M C. An empirical analysis of older adults' continuous use of internet applications based on expectation-confirmation theory[J]. Business review, 2012, 24(5): 89-101.)
17
马琪, 杨薇, 廖舫仪.数字治理时代老年人数字融入困境形成机理研究[J]. 北大政治学评论, 2021(1):153-177.
(MA Q, YANG W, LIAO F Y. Digital governance era older adults' digital inclusion challenges formation mechanism study[J]. PKU political science review, 2021(1): 153-177.)
18
CAO Y Y, QIN X H, LI J J, et al. Exploring seniors’ continuance intention to use mobile social network sites in China: a cognitive-affective-conative model[J]. Universal access in the information society, 2022, 21(1): 1-22.
19
MA Z, GAO Q, YANG M. Adoption of wearable devices by older people: Changes in use behaviors and user experiences[J]. International journal of human–computer interaction, 2023, 39(5): 964-987.
20
郝瑞敏, 赵静, 闫东宁, 等.老年人持续使用康复机器人的动因研究与设计思考[J]. 包装工程, 2024, 45(16):16-29.
(HAO R M, ZHAO J, YAN D N, et al. Study on motivation and design considerations for elderly's continuous use of rehabilitation robots[J]. Packaging engineering, 2024, 45(16):16-29.)
21
TALUKDER M S, LAATO S, ISLAM A K M N, et al. Continued use intention of wearable health technologies among the elderly: an enablers and inhibitors perspective[J]. Internet research, 2021, 31(5): 1611-1640.
22
LIANG R, LI Y, WEI W. Advancing elderly healthcare: adapting UTAUT2 with inhibitors for wearable device continuance[J]. Library Hi Tech, 2024.
23
LIU W. A hybrid model for explaining older adults' continuance intention toward SNSs[C]//2014 International conference on management of e-commerce and e-government. Shanghai, China: Institute of Electrical and Electronics Engineers, 2014: 138-142.
24
HSU Y C, TSAI C H, KUO Y M, et al. Telecare services for elderly: predictive factors of continued use intention[J]. The open biomedical engineering journal, 2016, 10(1): 82.
25
WANG Y, LU L, ZHANG R, et al. The willingness to continue using wearable devices among the elderly: SEM and FsQCA analysis[J]. BMC medical informatics and decision making, 2023, 23(1): 218
26
ZHANG Y, MA Y, LIANG C. Understanding older adults’ continuance intention toward wearable health technologies: an empowerment perspective[J]. Behaviour & information technology, 2024, 44(6): 1-18.
27
袁顺佳, 罗博, 张晋朝, 等.技术焦虑会阻碍老年人IT使用吗?[J]. 图书馆论坛, 2024, 44(2):103-113.
(YUAN S J, LUO B, ZHANG J C, et al. Will technological anxiety hinder elderly's IT usage? [J]. Library tribune, 2024, 44(2):103-113.)
28
MA Q, CHAN A H S, TEH P L. Insights into older adults’ technology acceptance through meta-analysis[J]. International journal of human–computer interaction, 2021, 37(11): 1049-1062.
29
MISHRA A, SHUKLA A, RANA N P, et al. Re-examining post-acceptance model of information systems continuance: a revised theoretical model using MASEM approach[J]. International journal of information management, 2023, 68: 102571.
30
JEYARAJ A, DWIVEDI Y K. Meta-analysis in information systems research: review and recommendations[J]. International journal of information management, 2020, 55: 102226.
31
KING W R, HE J. Understanding the role and methods of meta-analysis in IS research[J]. Communications of the Association for Information Systems, 2005, 16(1): 32.
32
ROSENTHAL R. Meta-Analytic procedures for social science research[J]. Educational researcher, 1986, 15(8): 18-20.
33
SARKAR S, CHAUHAN S, KHARE A. A meta-analysis of antecedents and consequences of trust in mobile commerce[J]. International journal of information management, 2020, 50: 286-301.
34
ABDULLAH F, WARD R. Developing a general extended technology acceptance model for e-learning (GETAMEL) by analysing commonly used external factors[J]. Computers in human behavior, 2016, 56: 238-256.
35
BORENSTEIN M, HEDGES L V, HIGGINS J P T, et al. Introduction to meta - analysis[M]. West Sussex: John Wiley & Sons, 2009.
36
PETERSON R A, BROWN S P. On the use of beta coefficients in meta-analysis[J]. Journal of applied psychology, 2005, 90(1): 175.
37
WU J, LEDERER A. A meta-analysis of the role of environment-based voluntariness in information technology acceptance[J]. MIS quarterly, 2009, 33(2): 419-432.
38
HUNTER J E, SCHMIDT F L. Dichotomization of continuous variables: The implications for meta-analysis[J]. Journal of applied psychology, 1990, 75(3): 334.
39
BRÜGGEMANN P, RAJGURU K. Comprehensive meta-analysis (CMA) 3.0: a software review[J]. 2022, 10(4): 425-429.
40
HEDGES L V, VEVEA J L. Fixed-and random-effects models in meta-analysis[J]. Psychological methods, 1998, 3(4): 486.
41
ROSENTHAL R. The file drawer problem and tolerance for null results[J]. Psychological bulletin, 1979, 86(3): 638.
42
AMBALOV I A. A meta-analysis of IT continuance: an evaluation of the expectation-confirmation model[J]. Telematics and informatics, 2018, 35(6): 1561-1571.
43
EGGER M, SMITH G D, SCHNEIDER M, et al. Bias in meta-analysis detected by a simple, graphical test[J]. BMJ, 1997, 315(7109): 629-634.
44
ORWIN R G. A fail-safe N for effect size in meta-analysis[J]. Journal of educational statistics, 1983, 8(2): 157-159.
45
李华锋, 张瑞琦, 段加乐.基于元分析的在线持续知识共享意愿影响因素研究[J]. 情报科学, 2023, 41(1):49-60.
(LI H F, ZHANG R Q, DUAN J L. A meta-analysis-based study on the influencing factors of willingness to engage in continuous online knowledge sharing[J]. Information science, 2023, 41(1): 49-60.)
46
HIGGINS J P T, THOMPSON S G, DEEKS J J, et al. Measuring inconsistency in meta-analyses[J]. British medical journal, 2003, 327(7414): 557-560.
47
COHEN J. Statistical power analysis for the behavioral sciences[M]. London: Routledge, 2013.
48
KEPES S, THOMAS M A. Assessing the robustness of meta-analytic results in information systems: publication bias and outliers[J]. European journal of information systems, 2018, 27(1): 90-123.
49
JAANA M, PARÉ G. Comparison of mobile health technology use for self-tracking between older adults and the general adult population in Canada: cross-sectional survey[J]. JMIR mHealth and uHealth, 2020, 8(11): e24718.
50
HUANG C M, LIAO J Y, LIN T Y, et al. Effects of user experiences on continuance intention of using immersive three‐dimensional virtual reality among institutionalized older adults[J]. Journal of advanced nursing, 2021, 77(9): 3784-3796.
51
马琪, 陈浩鑫.智慧养老技术接受与政策助推路径初探——基于2005—2020年国内外文献的系统性整合分析[J]. 中国科技论坛, 2021(4):161-170.
(MA Q, CHEN H X. Exploration on the acceptance of smart elderly care technology and policy promotion paths — a systematic integration analysis based on domestic and international literature from 2005 to 2020[J]. Forum on Science and Technology in China, 2021(4): 161-170.)
52
TANDON U, ERTZ M, SHASHI. Continued intention of mHealth care applications among the elderly: an enabler and inhibitor perspective[J]. International journal of human–computer interaction, 2024, 40(18): 5026-5041.
53
AHMAD A, RASUL T, YOUSAF A, et al. Understanding factors influencing elderly diabetic patients’ continuance intention to use digital health wearables: extending the technology acceptance model (TAM)[J]. Journal of open innovation: technology, market, and complexity, 2020, 6(3): 81.
54
JORBONYAN A, ABOLFATHI MOMTAZ Y, FOROUGHAN M, et al. Determinants of continuance intention to use hearing aids among older adults in Tehran (Iran)[J]. Healthcare, 2024, 12(4): 487.
55
王海晶.我国智慧养老服务的用户持续使用意愿及优化研究[D]. 哈尔滨: 哈尔滨师范大学, 2021.
(WANG H J. The study on users' continuous usage intention and optimization of smart elderly care services in China [D]. Harbin: Harbin Normal University, 2021.)
56
RASHIDI P, MIHAILIDIS A. A survey on ambient-assisted living tools for older adults[J]. IEEE journal of biomedical and health informatics, 2012, 17(3): 579-590.
57
STEELE R, LO A, SECOMBE C, et al. Elderly persons’ perception and acceptance of using wireless sensor networks to assist healthcare[J]. International journal of medical informatics, 2009, 78(12): 788-801.
58
YAN M, FILIERI R, GORTON M. Continuance intention of online technologies: a systematic literature review[J]. International journal of information management, 2021, 58(1): 102315.

作者贡献说明/Author contributions:

杨 静:进行数据收集,撰写与修改论文;

马 琪:确定论文选题与框架,修改论文。

基金

国家自然科学基金面上项目“人—机—环境视角下智慧养老服务系统持续使用的影响因素及其作用机制研究”(72374020)

PDF(1823 KB)

Accesses

Citation

Detail

段落导航
相关文章

/