基于图数据库Neo4j的学者合作图谱分析——以数字人文领域为例

熊回香, 黄晓捷, 陈子薇, 李昕然

知识管理论坛 ›› 2022, Vol. 7 ›› Issue (4) : 465-476.

PDF(4749 KB)
PDF(4749 KB)
知识管理论坛 ›› 2022, Vol. 7 ›› Issue (4) : 465-476. DOI: 10.13266/j.issn.2095-5472.2022.039
学术探索

基于图数据库Neo4j的学者合作图谱分析——以数字人文领域为例

作者信息 +

Analysis of Scholar Collaboration Map Based on Graph Database Neo4j——Taking the Field of Digital Humanities as an Example

Author information +
文章历史 +

摘要

[目的/意义] 在深度数字化发展的背景下,数字人文成为跨学科深度融合的发展领域,学者之间的科研合作日益频繁,需要对其日趋复杂的合作关系进行分析与挖掘,帮助学者获得潜在的合作机会以促进学术交流。[方法/过程] 将学者、机构、关键词作为节点数据,合著、被引、任职、研究主题作为关系数据,构建学者合作图谱,基于图数据库Neo4j进行存储,并利用Cypher查询语言和GDS算法库对数字人文领域学者的合作社区发现、核心学者识别、合作趋势预测进行分析。[结果/结论] 实验结果证明,Neo4j数据库较好地实现了数字人文领域学者合作网络的构建和图谱分析,能够帮助学者们在众多研究者当中快速地寻找与自己研究兴趣和方向高度关联的跨学科学者,从而促进数字人文领域学者合作与学科发展。

Abstract

[Purpose/Significance] In the context of deep digital development, digital humanities as a development field of interdisciplinary deep integration, the scientific research cooperation among scholars is becoming more and more frequent. It is necessary to analyze and excavate the increasingly complex cooperation relationship, to help scholars obtain potential cooperation opportunities to promote academic exchanges. [Method/Process] In this paper, scholars, institutions and keywords were used as node data, and coauthors, citations, posts and research topics were used as relational data to build scholar-collaboration graphs, which was stored based on the graph database Neo4j. Cypher query language and GDS algorithm library were used to analyze the cooperation community discovery, core scholar identification and cooperation trend prediction of scholars in the field of digital humanities. [Results/Conclusion] The experimental results show that Neo4j can better realize the construction and analysis of scholars' cooperation network in the field of digital humanities. It can help scholars quickly find interdisciplinary scholars who are highly related to their research interests and directions among many researchers, so as to promote scholars' cooperation and discipline development in the field of digital humanities.

关键词

数字人文 / 学者合作 / 关系图谱 / Neo4j

Key words

digital humanities / scholar cooperation / relationship map / Neo4j

引用本文

导出引用
熊回香 , 黄晓捷 , 陈子薇 , . 基于图数据库Neo4j的学者合作图谱分析——以数字人文领域为例[J]. 知识管理论坛. 2022, 7(4): 465-476 https://doi.org/10.13266/j.issn.2095-5472.2022.039
Xiong Huixiang , Huang Xiaojie , Chen Ziwei , et al. Analysis of Scholar Collaboration Map Based on Graph Database Neo4j——Taking the Field of Digital Humanities as an Example[J]. Knowledge Management Forum. 2022, 7(4): 465-476 https://doi.org/10.13266/j.issn.2095-5472.2022.039
中图分类号: G250   

参考文献

[1]
柯平,宫平.数字人文研究演化路径与热点领域分析[J].中国图书馆学报,2016,42(6):13-30.
[2]
潘连根.数字人文在档案领域中应用的理性思考[J].档案与建设,2020(7):6-10.
[3]
牛力,高晨翔,张宇锋,等.发现、重构与故事化:数字人文视角下档案研究的路径与方法[J].中国图书馆学报,2021,47(1):88-107.
[4]
刘蓓,袁毅,BOUTIN E.社会网络分析法在论文合作网中的应用研究[J].情报学报,2008,27(3):407-417.
[5]
刘志辉,张志强.作者关键词耦合分析方法及实证研究[J].情报学报,2010,29(2):268-275.
[6]
邱均平,刘国徽.基于社会网络和关键词分析的作者合作研究——以国内知识管理领域为例[J].情报科学,2014,32(6):3-7,13.
[7]
徐晨飞,赵文娟.我国数字人文研究领域作者合著网络分析[J].图书馆论坛,2019,39(11):14-24.
[8]
宫雪,杨颖.我国数字人文研究热点及合著网络可视化分析[J].图书情报导刊,2019,4(6):39-45.
[9]
图数据库GDB-帮助中心-阿里云[EB/OL].[2021-10-10]. https://help.aliyun.com/product/102714.html.
[10]
HugeGraph [EB/OL].[2021-10-10].https://hugegraph.github.io/hugegraph-doc/.
[11]
Native Graph Database | Neo4j Graph Database Platform [EB/OL].[2021-10-10]. https://neo4j.com/product/neo4j-graph-database/.
[12]
Graph Database | Graph Analytics Platform | TigerGraph [EB/OL].[2021-10-10]. https://www.tigergraph.com/.
[13]
刘春江,李姝影,胡汗林,方曙.图数据库在复杂网络分析中的研究与应用进展[J].数据分析与知识发现,2022,6(7):1-11.
[14]
郭坤铭.基于异构网络的关系推理与预测方法研究[D].太原:太原理工大学, 2017.
[15]
KOLOMEETS M, CHECHULIN A, KOTENKO I V. Social networks analysis by graph algorithms on the example of the VKontakte social network[J]. Journal of Wireless Mobile Networks, 2019, 10(2):55-75.
[16]
丁洪丽.基于Neo4j图数据库的人员关系挖掘[J].电讯技术,2020,60(7):771-777.
[17]
CHU Z, YU J, HAMDULLA A, A novel deep learning method for query task execution time prediction in graph database[J]. Future generation computer systems, 2020, 112: 534-548.
[18]
李金阳.图数据库在图书馆的应用研究[J].图书馆,2020(11):109-115.
[19]
FLEMING J, LEVY S, NAG P, et al. Graph database system and method for facilitating financial and corporate relationship analysis: US, US8674993 B1[P].2014.
[20]
张维冲,王芳,黄毅.基于图数据库的贵州省大数据政策知识建模研究[J].数字图书馆论坛,2020(4):30-38.
[21]
于娟,黄恒琪,席运江,等.基于图数据库的人物关系知识图谱推理方法研究[J].情报科学,2019,37(10):8-12.
[22]
DRAKOPOULOS G, KANAVOS A, MYLONAS P, et al. Defining and evaluating Twitter influence metrics: a higher-order approach in Neo4j[J].Social network analysis & mining,2017,7(1):52.
[23]
GIRVAN M, NEWMAN M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences,2002,99(12):7821-7826.
[24]
郭理,王嘉岐,张恒旭,等.基于Louvain重叠社区发现算法[J].石河子大学学报(自然科学版),2020,38(3):384-389.
[25]
DRAKOPOULOS G, GOURGARIS P, KANAVOS A. Graph communities in Neo4j[J]. Evolving systems, 2020, 11(3):397-407.
[26]
王曰芬,杨雪,余厚强,等.人工智能科研团队的合作模式及其对比研究[J].图书情报工作,2020,64(20):14-22.
[27]
夏翠娟,刘炜,陈涛,等.家谱关联数据服务平台的开发实践[J].中国图书馆学报,2016(3):27-38.
[28]
夏翠娟,张磊,贺晨芝.面向知识服务的图书馆数字人文项目建设:方法、流程与技术[J]. 图书馆论坛,2018(1):1-9.
[29]
夏翠娟,林海青,刘炜.面向循证实践的中文古籍数据模型研究与设计[J].中国图书馆学报,2017(6):16-34.
[30]
GLANZEL W, SCHUBERT A. Analysing scientific networks through co-authorship[M]//Handbook of quantitative science and technology research. Dordrecht: Springer, 2004: 257-276.
[31]
LU L, ZHOU T. Link prediction in complex networks: a survey[J]. Physica A: statistical mechanics and its applications, 2011, 390(6): 1150-1170.
[32]
LIBEN‐NOWELL D, KLEINBERG J. The link‐prediction problem for social networks[J]. Journal of the American Society for Information Science and Technology, 2007, 58(7): 1019-1031.
[33]
ZHOU T, LU L, ZHANG Y C. Predicting missing links via local information[J]. The European physical journal B, 2009, 71(4): 623-630.

作者贡献说明:

熊回香:研究整体思路框架指定、论文指导

黄晓捷:数据收集与处理、论文撰写

陈子薇:数据处理、论文修改

李昕然:论文修改、最终版本修订

基金

本文系国家社会科学基金年度项目“融合知识图谱与深度学习的在线学术资源挖掘推荐研究”(项目编号:19BTQ005)和中央高校基本科研业务费资助(创新资助项目)“个性化服务视角下数字档案馆用户画像模型构建研究”(项目编号:2020CXZZ124)研究成果之一。

PDF(4749 KB)

Accesses

Citation

Detail

段落导航
相关文章

/