基于自述研究兴趣相似性网络的机构潜在合作关系挖掘

胡志伟, 裴雷

知识管理论坛 ›› 2022, Vol. 7 ›› Issue (2) : 143-152.

PDF(2074 KB)
PDF(2074 KB)
知识管理论坛 ›› 2022, Vol. 7 ›› Issue (2) : 143-152. DOI: 10.13266/j.issn.2095-5472.2022.012
学术探索

基于自述研究兴趣相似性网络的机构潜在合作关系挖掘

作者信息 +

Mining Potential Cooperative Relationships Between Institutions Based on Similarity Network of Self-Reported Research Interests: A Case Study of Library, Information and Archives Management Schools in China

Author information +
文章历史 +

摘要

[目的/意义] 定量描述图书情报与档案管理学科的研究图景,为各机构之间合作关系的建立提供决策支持,从而推动跨机构合作的发展。[方法/过程] 采用LDA主题模型和网络分析方法,以国内67所图书情报与档案管理教育机构为例,通过对教师自述研究兴趣文本进行主题聚类构建机构相似性网络,并进行社群划分与潜在合作关系挖掘。[结果/结论] 当前国内图书情报与档案管理教师的研究兴趣主要涉及信息资源管理、信息计量与竞争情报、信息服务与用户等11个主题,样本机构可划分为7个社群,包含457对潜在合作关系。未来,图书情报与档案管理学科除了向5种路径进行学科融合之外,还可在不同领域充分展开科研与教育实践的跨机构合作。

Abstract

[Purpose/Significance] By quantitatively describing the research landscape of the discipline of library, information and archives management (LIAM), this paper can provide decision support for the establishment of cooperative relationships between institutions, thus promoting the development of inter-institutional cooperation. [Method/Process] By using LDA model and network analysis method, this paper took 67 LIAM schools in China as an example. By thematic clustering of faculty's self-reported research interest texts, the similarity network of institutions was constructed, and community division and potential cooperative relationship mining were performed. [Result/Conclusion] It is found that the current research interests of LIAM faculties in China mainly involve 11 topics, such as information resource management, informetrics and competitive intelligence, and information services and users. The sample schools can be divided into 7 communities, containing 457 pairs of potential cooperative relationships. In the future, in addition to taking part in five approaches of disciplinary integration, LIAM can fully carry out inter-institutional cooperation in scientific research and educational practice in different fields.

关键词

相似性网络 / 自述研究兴趣 / 科研合作 / 教育机构 / LDA模型

Key words

similarity network / self-reported research interests / scientific cooperation / educational institution / LDA

引用本文

导出引用
胡志伟 , 裴雷. 基于自述研究兴趣相似性网络的机构潜在合作关系挖掘[J]. 知识管理论坛. 2022, 7(2): 143-152 https://doi.org/10.13266/j.issn.2095-5472.2022.012
Hu Zhiwei , Pei Lei. Mining Potential Cooperative Relationships Between Institutions Based on Similarity Network of Self-Reported Research Interests: A Case Study of Library, Information and Archives Management Schools in China[J]. Knowledge Management Forum. 2022, 7(2): 143-152 https://doi.org/10.13266/j.issn.2095-5472.2022.012
中图分类号: G203   

参考文献

[1]
人民网. “六卓越一拔尖”计划2.0掀起一次中国高教“质量革命”[EB/OL]. [2021-01-30]. http://edu.people.com.cn/n1/2019/0430/c1006-31059188.html.
[2]
马费成, 李志元. 新文科背景下我国图书情报学科的发展前景[J]. 中国图书馆学报, 2020,46(6): 4-15.
[3]
LEE S, BOZEMAN B. The impact of research collaboration on scientific productivity[J]. Social studies of science, 2005,35(5): 673-702.
[4]
刘萍, 郭月培, 郭怡婷. 利用作者关键词网络探测作者相似性[J]. 现代图书情报技术, 2013(12): 62-69.
[5]
江文华, 徐健, 李纲, 等. 基于研究兴趣相似性网络的我国图书馆学研究社群分析[J]. 现代情报, 2019,39(9): 21-27.
[6]
林原, 王凯巧, 刘海峰, 等. 网络表示学习在学者科研合作预测中的应用研究[J]. 情报学报, 2020,39(4): 367-373.
[7]
史雅莉, 司莉, 姚瑞妃, 等. 国外iSchools图情学科教师队伍结构与研究领域调研及启示[J]. 图书情报知识, 2018(5): 33-40.
[8]
赵跃, 梅梦娜. 我国档案学研究的坚守、转向与进路——基于档案学者研究方向变化的审视[J]. 档案学通讯, 2019(3): 4-11.
[9]
肖希明, 杨蕾. 我国LIS教育机构师资队伍建设的调查分析[J]. 图书情报知识, 2014(1): 4-10.
[10]
陈翀, 李楠, 梁冰, 等. 基于成果特征的学者学术专长识别方法[J]. 图书情报工作, 2019,63(20): 96-103.
[11]
COPIELLO S. Research interest: another undisclosed (and redundant) algorithm by ResearchGate[J]. Scientometrics, 2019,120(6): 351-360.
[12]
HOLMBERG K, TSOU A, SUGIMOTO C R. The conceptual landscape of iSchools: examining current research interests of faculty members[J]. Information research, 2013,18(3): 19-22.
[13]
刘晓豫, 朱东华, 汪雪锋, 等. 多专长专家识别方法研究——以大数据领域为例[J]. 图书情报工作, 2018,62(3): 55-63.
[14]
熊回香, 杨雪萍, 蒋武轩, 等. 基于学术能力及合作关系网络的学者推荐研究[J]. 情报科学, 2019,37(5): 71-78.
[15]
刘萍, 周梦欢. 基于共词网络的专家专长挖掘[J]. 情报科学, 2012,30(12): 1815-1819.
[16]
KONG X, JIANG H, WANG W, et al. Exploring dynamic research interest and academic influence for scientific collaborator recommendation[J]. Scientometrics, 2017,113(1): 369-385.
[17]
安璐, 余传明, 李纲, 等. 中美图情科研机构研究领域比较研究[J]. 中国图书馆学报, 2014,40(5): 64-77.
[18]
林原, 谢张, 李鲁莹, 等. 卓越大学联盟国内外高校科研合作机会发现[J]. 现代情报, 2020,39(3): 81-86,114.
[19]
YAN E, GUNS R. Predicting and recommending collaborations: an author-,institution-, and country-level analysis[J]. Journal of informetrics, 2014, 8(2): 295-309.
[20]
CHUANG J, MANNING C D, HEER J. Termite: visualization techniques for assessing textual topic models[C]//Proceedings of the International Working Conference on Advanced Visual Interfaces. New York: ACM, 2012: 74-77.
[21]
BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. Journal of statistical mechanics: theory and experiment, 2008(10): P10008.
[22]
闫慧. 青年学者论图情档一级学科核心知识及发展方向:2019年图书情报与档案管理青年学者沙龙会议述评[J]. 中国图书馆学报, 2019,45(1): 121-127.

作者贡献声明:

胡志伟:收集、整理并分析数据,撰写论文

裴雷:指导研究思路,核查论文内容并提出修改意见


PDF(2074 KB)

Accesses

Citation

Detail

段落导航
相关文章

/