基于专利共类的有向技术交互影响分析‌

李瑞茜, 陈向东, 崔云霞, 崔彩霞

知识管理论坛 ›› 2018, Vol. 3 ›› Issue (3) : 160-171.

PDF(2136 KB)
PDF(2136 KB)
知识管理论坛 ›› 2018, Vol. 3 ›› Issue (3) : 160-171. DOI: 10.13266/j.issn.2095-5472.2018.016

基于专利共类的有向技术交互影响分析‌

作者信息 +

Analysis of Directed Technological Cross Impact Based on the Patent Co-classification

Author information +
文章历史 +

摘要

[目的/意义] 不同于已有文献主要关注特定技术领域内的技术关联关系,本文分析并预测多种技术间的有向交互影响关系,为促进目标技术提升及预测技术进步提供战略支持。[方法/过程] 基于中国35个技术领域的专利共类数据,在Choi等专利交互影响分析方法的基础上,计算35个技术领域间的有向交互影响值,并根据影响值的大小对技术对进行分组,构建技术交互影响网络并分析交互影响的变化趋势。[结果/结论] 整个技术领域内存在高比例的偏向及单向影响技术对,食品化学(FOC)是发出影响最大的技术领域,仪器领域的测量(MEA)、电气工程领域的电气机械、设备、能源(EAE)和COM(电脑技术)、化学领域的基本材料化学(BMC)、材料、冶金(MAM)是交互影响网络中的核心领域,处于交互影响网络的核心。

Abstract

[Purpose/significance] It is different from the existing research literatures which focus on the technical relationships in specific technical fields, this paper aims at analyzing and predicting the directional cross impacts among various technologies and providing strategic support for the development of target technology and forecasting technological progress. [Method/process] Using the patent co-classification data of 35 technical fields in China, this paper calculated the directed cross impact values between 35 technical areas based on the patent cross impact analysis methods of Choi and others. Then, according to the impact value, the technical pairs were grouped, and cross impact network was built and changes of cross impact was analyzed. [Result/conclusion] There exists a high proportion of bias and one-way technology impact in the whole technology fields. Food chemistry (FOC) is the most influential technical field. Measurement (MEA) in the instrument field, electrical machinery, equipment, energy (EAE) and computer technology (COM) in the electrical engineering field, as well as basic materials chemistry (BMC) and material, metallurgy (MAM) in chemistry field are the core technology fields, locating at the core of the network.

关键词

专利共类 / 技术领域 / 有向交互影响

Key words

patent co-classification / technical field / directed cross impact

引用本文

导出引用
李瑞茜 , 陈向东 , 崔云霞 , . 基于专利共类的有向技术交互影响分析‌[J]. 知识管理论坛. 2018, 3(3): 160-171 https://doi.org/10.13266/j.issn.2095-5472.2018.016
Li Ruixi , Chen Xiangdong , Cui Yunxia , et al. Analysis of Directed Technological Cross Impact Based on the Patent Co-classification[J]. Knowledge Management Forum. 2018, 3(3): 160-171 https://doi.org/10.13266/j.issn.2095-5472.2018.016
中图分类号: G250   

参考文献

[1]
SCHULER A, THOMPSON WA, VERTINSKY I, et al.Cross impact analysis of technological innovation and development in the softwood lumber industry in Canada: a structural modeling approach[J]. IEEE transactions onengineeringmanagement,1991,38 (3): 224–236.
[2]
BLANNING R W, REINIG B A. Cross-impact analysis using group decision support systems: an application to the future of Hong Kong[J]. Futures, 1999, 31(1): 39-56.
[3]
VILLACORTA P J, MASEGOSA A D, CASTELLANOS D, et al. A new fuzzy linguistic approach to qualitative cross impact analysis[J]. Applied soft computing, 2014, 24(11): 19-30.
[4]
CHOI C, KIM S, PARK Y. A patent-based cross impact analysis for quantitative estimation of technological impact: the case of information and communication technology[J]. Technological forecasting and social change, 2007, 74(8): 1296-1314.
[5]
THORLEUCHTER D, VAN DEN POEL D,NZIE A. A compared R&D-based and patent-based cross impact analysis for identifying relationships between technologies[J]. Technological forecasting & social change, 2010, 77(7):1037-1050.
[6]
KIM C, LEE H, SEOL H, et al. Identifying core technologies based on technological cross-impacts: an association rule mining (ARM) and analytic network process (ANP) approach[J].Expert systems with applications,2011,38(10): 12559-12564.
[7]
马荣康,刘凤朝. 基于专利交互影响分析的纳米技术发展模式国际比较[J]. 中国软科学, 2012(12):49-58.
[8]
秦立芳. 基于专利交叉影响法的NBI会聚趋势研究[D]. 北京:北京工业大学, 2013.
[9]
GAUCH S, BLIND K. Technological convergence and the absorptive capacity of standardization[J]. Technological forecasting and social change, 2015, 91(2): 236-249.
[10]
周磊,杨威.基于专利IPC的技术知识流网络挖掘[J].现代情报,2016, 36(1):45-50.
[11]
黄斌, 黄鲁成, 吴菲菲,等. 基于专利交叉影响分析法的技术影响关系研究[J]. 科技管理研究, 2015, 35 (15):147-151.
[12]
BRESCHI S, LISSONI F, MALERABA F. Knowledge-relatedness in firm technological diversification[J]. Research policy, 2003, 32(1): 69–87.
[13]
LIM H, PARK Y. Identification of technological knowledge intermediaries[J]. Scientometrics, 2010, 84(3): 543-561.
[14]
PARK H, YOON J. Assessing coreness and intermediarity of technology sectors using patent co-classification analysis: the case of Korean national R&D[J]. Scientometrics, 2014, 98(2): 853-890.
[15]
李蓓,陈向东. 基于专利合作网络的我国中药合作创新研究[J].中国中药杂志,2015,40(6):1212-1218.

作者贡献说明

李瑞茜: 构思论文、查找处理数据并撰写论文;

陈向东: 提出有益的论文修改建议;

崔云霞: 查找专利数据;

崔彩霞: 查找专利数据。

基金

国家自然基金重点项目“大型复杂产品研制过程运作管理研究”(71332003)

编辑: 易飞
PDF(2136 KB)

Accesses

Citation

Detail

段落导航
相关文章

/