基于多特征融合的跨域情感分类模型研究

琚春华, 邹江波, 傅小康

知识管理论坛 ›› 2016, Vol. 1 ›› Issue (6) : 464-470.

PDF(787 KB)
PDF(787 KB)
知识管理论坛 ›› 2016, Vol. 1 ›› Issue (6) : 464-470. DOI: 10.13266/j.issn.2095-5472.2016.054

基于多特征融合的跨域情感分类模型研究

  • 琚春华, 邹江波, 傅小康
作者信息 +

Cross-domain Emotion Classification Model Based on the Multi-feature Fusion

  • Ju Chunhua, Zou Jiangbo, Fu Xiaokang
Author information +
文章历史 +

摘要

[目的/意义] 跨领域情感分类仍是亟需重点研究的问题之一。[方法/过程] 借助情感无关词,通过谱聚类算法构建源领域与目标领域的跨域情感特征词簇,将谱聚类得到的情感词特征与位置特征、关键词特征、词性特征融入逻辑回归分类算法中,实现基于多特征融合的跨领域情感分类算法;并以用户评论数据进行验证。[结果/结论] 研究结果表明,CDFF(Cross Domain pulse Four Factor)算法可有效实现跨域用户的情感分类,为跨领域情感分类研究提供借鉴。

Abstract

[Purpose/significance] The sentiment classification is still one of the cross-cutting issues needed to focused on.[Method/process] With the help of emotion unrelated words, by the spectral clustering algorithm, the authors constructed a cross-domain feature words emotion cluster in the source and target areas of the field. The position of the features and characteristics of emotional words, keyword features, and POS features were integrated into the logic of the regression classification algorithm to achieve a cross-cutting emotion classification algorithm based on the multi-feature fusion. [Result/conclusion] Research results show that CDFF (Cross-domain pulse Four Factors) algorithm is effective when the cross-domain user emotion is classified and its provide reference for same study.

关键词

跨域情感分类 / 多特征融合 / 谱聚类 / 迁移学习

Key words

cross-domain sentiment classification / multi-feature fusion / spectral clustering / transfer learning

引用本文

导出引用
琚春华, 邹江波, 傅小康. 基于多特征融合的跨域情感分类模型研究[J]. 知识管理论坛. 2016, 1(6): 464-470 https://doi.org/10.13266/j.issn.2095-5472.2016.054
Ju Chunhua, Zou Jiangbo, Fu Xiaokang. Cross-domain Emotion Classification Model Based on the Multi-feature Fusion[J]. Knowledge Management Forum. 2016, 1(6): 464-470 https://doi.org/10.13266/j.issn.2095-5472.2016.054

PDF(787 KB)

Accesses

Citation

Detail

段落导航
相关文章

/