PDF(1440 KB)
PDF(1440 KB)
PDF(1440 KB)
知识液态化趋势下基于DeepSeek的知识生产范式重构研究
Reconstruction Study of Knowledge Production Paradigm under the Trend of Knowledge Liquidization Based on DeepSeek
【目的/意义】 鉴于数字技术的演进催生知识形态从固态向液态的认知相变,针对现有研究在系统揭示DeepSeek等跨模态推理技术重构知识生产范式机制方面存在的分析框架缺位问题,提出知识液态化理论框架,揭示跨模态推理技术对知识生产范式的重构机制。 【方法/过程】 构建包含“模态—主体—流程”3个维度的知识液态化分析框架,采用案例分析与功能解析法,系统剖析DeepSeek的动态稀疏注意力机制、混合专家(MoE)模型及跨模态对齐技术重构知识生产范式的核心动因。 【结果/结论】 DeepSeek并非一般性的影响因素,而是通过其技术架构(MoE等)与开源模式,从根本上触发知识生产在模态(从离散到统一)、主体(从中心化到人机分布式)、流程(从线性到动态交互)的三重范式重构。这一重构过程在提升知识生产效率的同时也衍生出认知权威耗散、责任归属模糊等新型治理挑战。
[Purpose/Significance] Given that the evolution of digital technology has triggered a cognitive phase transition of knowledge forms from solid to liquid, this study addresses the gap in existing research, where there is a lack of analytical frameworks for systematically uncovering the mechanisms through which cross-modal reasoning technologies such as DeepSeek reconstruct the paradigm of knowledge production. This study proposes a theoretical framework of knowledge liquidization and reveals the reconstruction mechanism of cross-modal reasoning technologies on the knowledge production paradigm. [Method/Process] An analytical framework of knowledge liquidization encompassing three dimensions, “modality-subject-process”, was constructed. By integrating case analysis and functional analysis methods, this study systematically examined the core drivers through which DeepSeek’s dynamic sparse attention mechanism, mixture of experts (MoE) model, and cross-modal alignment technology reconstructed the knowledge production paradigm. [Result/Conclusion] The findings indicate that DeepSeek is not merely a general influencing factor. Instead, through its technical architecture (such as the MoE model) and open-source model, it fundamentally triggers a threefold paradigmatic reconstruction of knowledge production: in the dimension of modality, transforming from discrete forms to unified forms; in the dimension of subject, shifting from centralized dominance to human-machine distributed collaboration; in the dimension of process, evolving from linear progression to dynamic interaction. While this reconstruction process significantly improves the efficiency of knowledge production, it also gives rise to new governance challenges, such as the dissipation of cognitive authority and ambiguity in responsibility attribution.
知识液态化 / 知识生产范式 / DeepSeek / 跨模态推理
knowledge liquidization / knowledge production paradigm / DeepSeek / cross-modal reasoning
| [1] |
景池, 冯明宇. 数字生态文明: 当代出场、内涵面相与实践展陈[J]. 北方民族大学学报, 2025(2): 123-132.
|
| [2] |
董慧, 金汉. 数字时代中华文明的传承与发展[J]. 中南民族大学学报(人文社会科学版), 2025, 45(1): 11-24.
|
| [3] |
童云海, 陈建龙. DeepSeek热潮下的双重变革:大模型的技术革新与高校图书馆服务范式的重构[J]. 大学图书馆学报, 2025, 43(1): 66-70.
|
| [4] |
谢新水. 智能跃迁、开源创新与主权AI: DeepSeek现象推动人工智能开源创新生态体系建设[J]. 电子政务, 2025(3): 40-48.
|
| [5] |
窦永香, 解哲辉, 汤晓芳. 基于开源科技项目数据的多模态知识图谱构建研究[J]. 情报理论与实践, 2025, 48(3): 32-40.
|
| [6] |
严双咏, 刘长红, 江爱文, 等. 语义耦合相关的判别式跨模态哈希学习算法[J]. 计算机学报, 2019, 42(1): 164-175.
|
| [7] |
|
| [8] |
|
| [9] |
李顺才, 邹珊刚.知识流动机理的三维分析模式[J]. 研究与发展管理, 2003(2): 39-43.
|
| [10] |
|
| [11] |
|
| [12] |
姜利标.数据内爆时代认知范式变革下的知识生产[J]. 探索与争鸣, 2024(11): 22-25.
|
| [13] |
杜岩岩, 牛军明. 数据中心化知识生产:数字时代大学知识生产的新范式[J]. 复旦教育论坛, 2024, 22(5): 13-20.
|
| [14] |
魏钰琦, 李宁.用于图文检索的跨模态信息交互推理网络[J]. 计算机工程与应用, 2023, 59(16): 115-124.
|
| [15] |
卫力, 王亚玲, 张秀, 等. 数字化转型提升企业创新效率的网络机制—合作和知识双重创新网络结构洞的中介作用[J]. 西部论坛, 2024, 34(1): 81-95.
|
| [16] |
张亮, 陈希聪. 生成式人工智能背景下的跨境数据安全规制—基于DeepSeek、ChatGPT等主流AI的思考[J]. 湖北大学学报(哲学社会科学版), 2025, 52(2): 120-128.
|
| [17] |
张慕华. 以人为本与人机协作:学术期刊数智化发展路径探析[J]. 清华大学学报(哲学社会科学版), 2025, 40(2): 214-224.
|
| [18] |
唐昆, 李白杨, 张心源. 基于主客观融合的人工智能跨模态生成内容质量及效能测度研究[J]. 情报理论与实践, 2024, 47(11): 150-161.
|
| [19] |
刘媛媛, 王晓燕, 张雨欣, 等. 基于语义一致与多级相似性的跨模态哈希检索[J]. 数据分析与知识发现, 2024, 8(7): 89-102.
|
| [20] |
李国杰. DeepSeek引发的AI发展路径思考[J]. 科技导报, 2025, 43(3): 14-19.
|
| [21] |
王明远. DeepSeek的启示:中国创新体制与路径探索[J]. 企业改革与发展, 2025(3): 18-21.
|
| [22] |
赵逸伦. 知识平权—论作为知识传播媒介变革的“视频论文”[J]. 艺术学研究, 2025(1): 83-92.
|
尹淑英:进行框架设计与论文撰写;
吉海涛:提供研究思路;
郭晓亮:修改论文。
/
| 〈 |
|
〉 |